python 机器学习 用什么库

 我来答
老男孩教育
2021-12-06 · 百度认证:北京一天天教育科技有限公司官方账号,教育领域创作者
老男孩教育
专注于Linux高级运维、Python开发、大数据培训,为您分享行业前沿的技术,有效的学习方法和有价值的学习资料。
向TA提问
展开全部
使用Python编程可以快速迁移代码并进行改动,无须花费过多的精力在修改代码与代码规范上。开发者在Python中封装了很多优秀的依赖库,可以直接拿来使用,常见的机器学习库如下:
1、Scikit-Learn
Scikit-Learn基于Numpy和Scipy,是专门为机器学习建造的一个Python模块,提供了大量用于数据挖掘和分析的工具,包括数据预处理、交叉验证、算法与可视化算法等一系列接口。
Scikit-Learn基本功能可分为六个部分:分类、回归、聚类、数据降维、模型选择、数据预处理。其中集成了大量分类、回归、聚类功能,包括支持向量机、逻辑回归、随机森林、朴素贝叶斯等。
2、Orange3
Orange3是一个基于组件的数据挖掘和机器学习软件套装,支持Python进行脚本开发。它包含一系列的数据可视化、检索、预处理和建模技术,具有一个良好的用户界面,同时也可以作为Python的一个模块使用。
用户可通过数据可视化进行数据分析,包含统计分布图、柱状图、散点图,以及更深层次的决策树、分层聚簇、热点图、MDS等,并可使用它自带的各类附加功能组件进行NLP、文本挖掘、构建网络分析等。
3、XGBoost
XGBoost是专注于梯度提升算法的机器学习函数库,因其优良的学习效果及高效的训练速度而获得广泛的关注。XGBoost支持并行处理,比起同样实现了梯度提升算法的Scikit-Learn库,其性能提升10倍以上。XGBoost可以处理回归、分类和排序等多种任务。
4、NuPIC
NuPIC是专注于时间序列的一个机器学习平台,其核心算法为HTM算法,相比于深度学习,其更为接近人类大脑的运行结构。HTM算法的理论依据主要是人脑中处理高级认知功能的新皮质部分的运行原理。NuPIC可用于预测以及异常检测,使用面非常广,仅要求输入时间序列即可。
5、Milk
Milk是Python中的一个机器学习工具包。Milk注重提升运行速度与降低内存占用,因此大部分对性能敏感的代码都是使用C++编写的,为了便利性在此基础上提供Python接口。重点提供监督分类方法,如SVMs、KNN、随机森林和决策树等。
百度网友d73d4f6
2016-07-27 · TA获得超过1581个赞
知道小有建树答主
回答量:1441
采纳率:63%
帮助的人:448万
展开全部
(1)scikit-learn
Python下做机器学习,首推scikit-learn。该项目文档齐全、讲解清晰,功能齐备,使用方便,而且社区活跃。

(2)Orange
机器学习是其的功能之一,主要还是侧重数据挖掘,可以用可视化语言或Python进行操作,拥有机器学习组件,还具有生物信息学以及文本挖掘的插件。

(3)shogun
shogun,非日本的老外弄的一个机器学习库,还专门配了一个我们能看懂的日文名“将军”(是日本幕府时代的将军)。文档齐全,开发活跃,更新快,运算速度也很快。主攻大尺度的核函数,尤其是大尺度核函数下的SVM。具有很多SVM的高级用法,比如多核配用等。支持Python、R、C++、Matlab等语言。

(4)其它
A.pyml(a python module for machine learning,支持svm/knn/k-means==)
B.milk(python的机器学习工具包,主要是针对监督学习,包括svm/knn/决策树)
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
2023-05-04 · 超过13用户采纳过TA的回答
知道答主
回答量:280
采纳率:85%
帮助的人:5.5万
展开全部

1.Pipenv

Pipenv是Kenneth Reitz的业余项目,旨在将其他软件包整合到Python里。它不需要安装virtualenv,virtualenvwrapper,不用管理requirements.txt文件,并且不用确保依赖版本的可复现性。通过Pipenv,你可以在Pipfile中指定依赖项。该工具可生成一个Pipfile.lock文件,使你的构建更具确定性,避免产生难以查找的Bug。

2.PyTorch

PyTorch是Facebook深度学习框架,源于Torch框架,同时改善了Torch框架,基于python语言,由于实现了动态计算图范式,PyTorch已经成为众多研究人员的首选框架之一,可以计算梯度,而且非常快,可扩展性强。

3.Caffe2

Caffe2支持分布式训练、部署,新的CPU和支持CUDA的硬件。PyTorch可能更适合做研究,而Caffe2更加适合大规模部署,就像在Facebook上看到的那样。另外,你可以在PyTorch里构建并训练模型,同时用Caffe2部署。

4.Pendulum

Pendulum的优势之一在于,它是Python标准datetime替代品,因此你可以轻松地将其与现有的代码集成,并且在你需要的时候才使用它的功能。Pendulum的作者特别注意时间分区的处理,默认在每个实例中时间分区是可用的,并且以UTC计时。你也可以获得扩展timedelta来简化datetime的计算。

5.Dash

Dash是一个可构建Web应用,尤其是数据可视化Web应用的纯Python开源库。它建立在Flask、Plotly和React之上,并提供这几个框架的函数抽象接口,从而开发者不必学习这些框架,高效开发。这些应用程序可在浏览器和移动设备中使用。

6.PyFlux

PyFlux是专门针对时间序列开发的Python开源库。时间序列研究是统计学和经济学的子领域,其目的是用于描述时间序列的行为,同时也预测时序未来的行为状态。

7.Fire

Fire是一个开源库,可以为任何Python项目自动生成一个命令行界面。你几乎不需要编写任何代码或者文档,你只需要调用一个Fire方法并把它传递给你想要的命令行界面:一个函数、一个对象、一个类、一个库,甚至不传递任何参数。

8.imbalanced-learn

imbalanced-learn是一个Python库,它提供了相关的技术来解决数据不平衡的问题。另外,它和scikit-learn兼容,并且是scikit-learn-contrib项目的一部分,非常有用。

9.FlashText

FlashText证明了算法和数据结构设计的重要性,即使对于简单的问题,更好的算法也能够轻松超越在快 CPU上运行的朴素实现。

10.Luminoth

Luminoth是一个用TensorFlow和Sonnet构建的开源的计算机视觉Python工具包。它可直接支持物体检测,背后支持的模型是Faster R-CNN。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式