怎样用对称性与奇偶性计算二重积分
1、对称性计算二重积分:当被积函数 integrand 是奇函数时,在对称于原点的区域内积分为0。被积函数或被积函数的一部分是否关於某个坐标对称,积分区间是否对称,如果可以就可以用对称性,只用积分一半再乘以2。
2、奇偶性计算二重积分:当被积函数是偶函数时,在对称于原点的区域内积分为单侧积分的两倍。被积函数或被积函数的一部分是否具有奇偶性,积分区间是否对称,如果奇函数则积分为0为偶函数则用对称性。
性质须知
1、被积函数提供不定积分积出来的函数,虽然看可以讨论原函数的奇偶性,但是讨论积分函数去奇偶性时,考虑的仅仅是被积函数。
2、有界性:设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界。
3、单调性:设函数f(x)的定义域为D,区间I包含于D。如果对于区间上任意两点x1及x2,当x1<x2时,恒有f(x1)<f(x2),则称函数f(x)在区间I上是单调递增的
以上内容参考:百度百科——函数
2024-04-02 广告
具体如下:
1、对称性计算二重积分:当被积函数 integrand 是奇函数时,在对称于原点的区域内积分为0。被积函数或被积函数的一部分是否关於某个坐标对称,积分区间是否对称,如果可以就可以用对称性,只用积分一半再乘以2。
2、奇偶性计算二重积分:当被积函数是偶函数时,在对称于原点的区域内积分为单侧积分的两倍。被积函数或被积函数的一部分是否具有奇偶性,积分区间是否对称,如果奇函数则积分为0为偶函数则用对称性。
性质须知
1、被积函数提供不定积分积出来的函数,虽然看可以讨论原函数的奇偶性,但是讨论积分函数去奇偶性时,考虑的仅仅是被积函数。
2、有界性:设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界。
3、单调性:设函数f(x)的定义域为D,区间I包含于D。如果对于区间上任意两点x1及x2,当x1<x2时,恒有f(x1)<f(x2),则称函数f(x)在区间I上是单调递增的。
奇偶性计算二重积分时要看被积函数或被积函数的一部分是否具有奇偶性,积分区间是否对称,如果奇函数则积分为0为偶函数则用对称性