展开全部
证明:∵ AB为圆O的直径
∴ ∠ACB=90 BC=8
∵ ∠ADC与∠ABC同为弦AC对应的圆周角,
∴ ∠ADC=∠ABC.
根据正弦定理
Sin∠ACD/AD=Sin∠ADC/AC=Sin∠ABC/AC=Sin∠ACB/AB
得 AD=AB*Sin∠ACD/Sin∠ACB=10*√2/2/1=5√2
Sin∠ADC=AC*Sin∠ACD/AD=6*√2/2/5√2
=3/5
Cos∠ADC=4/5
Sin∠CAD=Sin(180-∠ACD-∠ADC)=Sin(∠ACD+∠ADC)=Sin∠ACD*Cos∠ADC+Cos∠ACD*Sin∠ADC=7√2/10
再由正弦定理得
Sin∠CAD/CD=Sin∠ADC/AC
得 CD=AC*Sin∠CAD/Sin∠ADC=7√2
∴ ∠ACB=90 BC=8
∵ ∠ADC与∠ABC同为弦AC对应的圆周角,
∴ ∠ADC=∠ABC.
根据正弦定理
Sin∠ACD/AD=Sin∠ADC/AC=Sin∠ABC/AC=Sin∠ACB/AB
得 AD=AB*Sin∠ACD/Sin∠ACB=10*√2/2/1=5√2
Sin∠ADC=AC*Sin∠ACD/AD=6*√2/2/5√2
=3/5
Cos∠ADC=4/5
Sin∠CAD=Sin(180-∠ACD-∠ADC)=Sin(∠ACD+∠ADC)=Sin∠ACD*Cos∠ADC+Cos∠ACD*Sin∠ADC=7√2/10
再由正弦定理得
Sin∠CAD/CD=Sin∠ADC/AC
得 CD=AC*Sin∠CAD/Sin∠ADC=7√2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询