2个回答
展开全部
最后结果正确,中间红框内书写错误。应为:
lim<x→0>[2ln(1-x/2+x^2/3)+x]/x^2
= lim<x→0>{2ln[1-(x/2-x^2/3)]+x}/x^2
= lim<x→0>{2 [-(x/2-x^2/3) - (1/2)(x/2-x^2/3)^2 -...] + x} / x^2
= lim<x→0>{2 [-x/2 + x^2/3 - (1/2)(x/2)^2 +o(x^2)] + x} / x^2
= lim<x→0>{2 [-1/2 + x/3 - (1/2)(x/4) +o(x^2)] + 1} / x
= lim<x→0>2 [ x/3 - (1/8)x +o(x^2)] / x = 2(1/3 - 1/8)
lim<x→0>[2ln(1-x/2+x^2/3)+x]/x^2
= lim<x→0>{2ln[1-(x/2-x^2/3)]+x}/x^2
= lim<x→0>{2 [-(x/2-x^2/3) - (1/2)(x/2-x^2/3)^2 -...] + x} / x^2
= lim<x→0>{2 [-x/2 + x^2/3 - (1/2)(x/2)^2 +o(x^2)] + x} / x^2
= lim<x→0>{2 [-1/2 + x/3 - (1/2)(x/4) +o(x^2)] + 1} / x
= lim<x→0>2 [ x/3 - (1/8)x +o(x^2)] / x = 2(1/3 - 1/8)
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询