1个回答
2017-09-13
展开全部
解:∵xyz+√(x^2+y^2+z^2)=√2
∴两边微分,得 d(xyz)+d(√(x^2+y^2+z^2))=d(√2)
==>yzdx+xzdy+xydz+(xdx+ydy+zdz)/√(x^2+y^2+z^2)=0
故所求微分是yzdx+xzdy+xydz+(xdx+ydy+zdz)/√(x^2+y^2+z^2)=0。
∴两边微分,得 d(xyz)+d(√(x^2+y^2+z^2))=d(√2)
==>yzdx+xzdy+xydz+(xdx+ydy+zdz)/√(x^2+y^2+z^2)=0
故所求微分是yzdx+xzdy+xydz+(xdx+ydy+zdz)/√(x^2+y^2+z^2)=0。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询