初三数学几何题
在三角形ABC中,AB=AC,D为BC中点,DE垂直AC于E,F为DE中点,连BE,AF,求证BE垂直AF...
在三角形ABC中,AB=AC,D为BC中点,DE垂直AC于E,F为DE中点,连BE,AF,求证BE垂直AF
展开
3个回答
展开全部
证明:(利用直角三角形里出现高这个基本图形,会有同角的余角相等,和三个大中小直角三角形相似)
∵AD⊥BC,DE⊥AC
∴∠C+∠DAC=∠ADE+∠DAC=90°即∠C=∠ADE
∴△ADC∽△DEC
∴AD:DC=DE:CE
∵D为BC中点,F为DE中点
即DC=1/2BC,DE=2DF,代入比例式
得AD:1/2BC=2DF:CE
即AD:BC=DF:CE
∵∠C=∠ADE
∴△ADF∽△BCE
∴∠DAF=∠EBD
∵AD⊥BC
∴∠EBD+∠BMD=90°(令AD与BE相交于M点)
∵∠BMD=∠AME(对顶角相等)
∴∠DAF+∠AME=90°(两个相等的角等量代换)
∴BE⊥AF
∵AD⊥BC,DE⊥AC
∴∠C+∠DAC=∠ADE+∠DAC=90°即∠C=∠ADE
∴△ADC∽△DEC
∴AD:DC=DE:CE
∵D为BC中点,F为DE中点
即DC=1/2BC,DE=2DF,代入比例式
得AD:1/2BC=2DF:CE
即AD:BC=DF:CE
∵∠C=∠ADE
∴△ADF∽△BCE
∴∠DAF=∠EBD
∵AD⊥BC
∴∠EBD+∠BMD=90°(令AD与BE相交于M点)
∵∠BMD=∠AME(对顶角相等)
∴∠DAF+∠AME=90°(两个相等的角等量代换)
∴BE⊥AF
2010-11-09
展开全部
任务一下!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∵AD⊥BC,DE⊥AC
∴∠C+∠DAC=∠ADE+∠DAC=90°即∠C=∠ADE
∴△ADC∽△DEC
∴AD:DC=DE:CE
∵D为BC中点,F为DE中点
即DC=1/2BC,DE=2DF,代入比例式
得AD:1/2BC=2DF:CE
即AD:BC=DF:CE
∵∠C=∠ADE
∴△ADF∽△BCE
∴∠DAF=∠EBD
∵AD⊥BC
∴∠EBD+∠BMD=90°(令AD与BE相交于M点)
∵∠BMD=∠AME(对顶角相等)
∴∠DAF+∠AME=90°(两个相等的角等量代换)
∴BE⊥AF
∴∠C+∠DAC=∠ADE+∠DAC=90°即∠C=∠ADE
∴△ADC∽△DEC
∴AD:DC=DE:CE
∵D为BC中点,F为DE中点
即DC=1/2BC,DE=2DF,代入比例式
得AD:1/2BC=2DF:CE
即AD:BC=DF:CE
∵∠C=∠ADE
∴△ADF∽△BCE
∴∠DAF=∠EBD
∵AD⊥BC
∴∠EBD+∠BMD=90°(令AD与BE相交于M点)
∵∠BMD=∠AME(对顶角相等)
∴∠DAF+∠AME=90°(两个相等的角等量代换)
∴BE⊥AF
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |