
1个回答
展开全部
limx→0 f(x)/g(x)
=limx→0 [∫[0,x](sint)^2dt]/(x^3+x^4)
=limx→0(sinx)^2/(3x^2+4x^3)
=limx→0 x^2/(3x^2+4x^3)
=limx→0 x^2/(3x^2+4x^3)
=limx→0 2x/(6x+12x^2)
=limx→0 2/(6+24x)
=1/3
所以当x→0时,f(x)是g(x)的同阶无穷小
=limx→0 [∫[0,x](sint)^2dt]/(x^3+x^4)
=limx→0(sinx)^2/(3x^2+4x^3)
=limx→0 x^2/(3x^2+4x^3)
=limx→0 x^2/(3x^2+4x^3)
=limx→0 2x/(6x+12x^2)
=limx→0 2/(6+24x)
=1/3
所以当x→0时,f(x)是g(x)的同阶无穷小
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询