y=f(u) , u=sin(x^2)
y=f(sin(x^2))
y'
= f'(sin(x^2)) . d/dx(sin(x^2))
= f'(sin(x^2)) . (-cos(x^2) .(2x) )
=-2x.cos(x^2).f'(sin(x^2))
y''
=-2[ x.cos(x^2). d/dx{ f'(sin(x^2))} + f'(sin(x^2)) .d/dx { x.cos(x^2) } ]
//
来自这里!
d/dx { x.cos(x^2) }
= x [-sin(x^2)](2x) + cos(x^2)