函数y=(x-1)e^(π/2+arctanx)渐近线,b为什么等于-2e^π.不是等于-e^π?

 我来答
甜美志伟
高粉答主

2019-01-10 · 每个回答都超有意思的
知道答主
回答量:9
采纳率:100%
帮助的人:6320
展开全部

理由如下:

k₁=lim(x→+∞)(x-1)e^(π/2+arctanx)/x=e^π

B₁=lim(x→+∞)[(x-1)e^(π/2+arctanx)-e^π·x)]

=lim(x→+∞)[(x-1)e^(π/2+arctanx)-e^π·(x-1+1))

=lim(x→+∞){(x-1)[e^(π/2+arctanx)-e^π)]-e^π}

∵lim(x→+∞)(x-1)[e^(π/2+arctanx)-e^π)]

=lim(x→+∞)[e^(π/2+arctanx)-e^π)]/[1/(x-1)]      

0/0型,洛必达法则=lim(x→+∞){1/(1+x²)[e^(π/2+arctanx)-e^π)]/[-1/(x-1)²]=-e^π

∴B₁=-2e^π

扩展资料:

三角函数的推导方法

定名法则

90°的奇数倍+α的三角函数,其绝对值与α三角函数的绝对值互为余函数。90°的偶数倍+α的三角函数与α的三角函数绝对值相同。也就是“奇余偶同,奇变偶不变”。

定号法则

将α看做锐角(注意是“看做”),按所得的角的象限,取三角函数的符号。也就是“象限定号,符号看象限”(或为“奇变偶不变,符号看象限”)。

在Kπ/2中如果K为偶数时函数名不变,若为奇数时函数名变为相反的函数名。正负号看原函数中α所在象限的正负号。

关于正负号有个口诀;一全正,二正弦,三两切,四余弦,即第一象限全部为正,第二象限角,正弦为正,第三象限,正切和余切为正,第四象限,余弦为正。

或简写为“ASTC”即“all”“sin”“tan+cot”“cos”依次为正。还可简记为:sin上cos右tan/cot对角,即sin的正值都在x轴上方,cos的正值都在y轴右方,tan/cot 的正值斜着。

比如:90°+α。定名:90°是90°的奇数倍,所以应取余函数;定号:将α看做锐角,那么90°+α是第二象限角,第二象限角的正弦为正,余弦为负。所以sin(90°+α)=cosα , cos(90°+α)=-sinα 这个非常神奇,屡试不爽~

还有一个口诀“纵变横不变,符号看象限”,例如:sin(90°+α),90°的终边在纵轴上,所以函数名变为相反的函数名,即cos,所以sin(90°+α)=cosα。

参考资料来源:百度百科--渐近线

参考资料来源:百度百科--三角函数

教育小百科达人
2019-01-09 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:478万
展开全部

k₁=lim(x→+∞)(x-1)e^(π/2+arctanx)/x=e^π

B₁=lim(x→+∞)[(x-1)e^(π/2+arctanx)-e^π·x)]=lim(x→+∞)[(x-1)e^(π/2+arctanx)-e^π·(x-1+1))=lim(x→+∞){(x-1)[e^(π/2+arctanx)-e^π)]-e^π}

∵lim(x→+∞)(x-1)[e^(π/2+arctanx)-e^π)]=lim(x→+∞)[e^(π/2+arctanx)-e^π)]/[1/(x-1)] =lim(x→+∞){1/(1+x²)[e^(π/2+arctanx)-e^π)]/[-1/(x-1)²]=-e^π

∴B₁=-2e^π

扩展资料:

求渐近线方法:垂直渐近线,这种渐近线的形式为x=a,也就是函数在x=a处的值为无穷大。所以求这种渐近线的时候只要找函数的特殊点,然后验证在该点的函数值是否为无穷大即可。

根据渐近线的位置,可将渐近线分为三类:水平渐近线、铅直渐近线、斜渐近线。

如果当  时,  ,就把  叫做的水平渐近线。例如,y = 3是曲线y =  + 3的水平渐近线;

如果当  时,  ,其中a和b为常数,那么 就是  的一条斜渐近线。

1.与x^2/a^2-y^2/b^2=1渐近线相同的双曲线的方程,有无数条(且焦点可能在x轴或y轴上);

2.与x^2/a^2-y^2/b^2=1渐近线相同的双曲线可设为x^2/a^2-y^2/b^2=N,进行求解;

3.x^2/a^2-y^2/b^2=1的渐近线方程为  b/a*x=y;

4.y^2/a^2-x^2/b^2=1的渐近线方程为  a/b*x=y。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
善言而不辩
2017-12-30 · TA获得超过2.5万个赞
知道大有可为答主
回答量:1.1万
采纳率:90%
帮助的人:2713万
展开全部
  • k₁=lim(x→+∞)(x-1)e^(π/2+arctanx)/x=e^π

    B₁=lim(x→+∞)[(x-1)e^(π/2+arctanx)-e^π·x)]

    =lim(x→+∞)[(x-1)e^(π/2+arctanx)-e^π·(x-1+1))

    =lim(x→+∞){(x-1)[e^(π/2+arctanx)-e^π)]-e^π}

    ∵lim(x→+∞)(x-1)[e^(π/2+arctanx)-e^π)]

    =lim(x→+∞)[e^(π/2+arctanx)-e^π)]/[1/(x-1)]      0/0型,洛必达法则

    =lim(x→+∞){1/(1+x²)[e^(π/2+arctanx)-e^π)]/[-1/(x-1)²]=-e^π

    ∴B₁=-2e^π

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
WonderDao
2018-07-19
知道答主
回答量:1
采纳率:0%
帮助的人:851
展开全部
问题的关键是,无穷大减去无穷大是不可以等于零的。所以要化为0/0型,就像被采纳的答案那样做。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式