2个回答
展开全部
这里涉及到两个积分:
∫√(a^2-x^2)dx
∫√(x^2-a^2)dx
其求解方法如下:
①令x = asinz,dx = acosz dz
∫ √(a^2 - x^2) dx
= ∫ (acosz)(acosz) dz
= a^2/2 • ∫ (1 + cos2z) dz
= a^2/2 • [z + (sin2z)/2] + C
= (a^2/2)arcsin(x/a) + (a^2/2)sinzcosz + C
= (a^2/2)arcsin(x/a) + (a^2/2)(x/a)√(a^2 - x^2)/a + C
= (a^2/2)arcsin(x/a) + (x/2)√(a^2 - x^2) + C
= (1/2)[a^2arcsin(x/a) + x√(a^2 - x^2)] + C
②令x = a * secz,dx = a * secztanz dz,假设x > a
∫ √(x² - a²) dx
= ∫ √(a²sec²z - a²) * (a * secztanz dz)
= a²∫ tan²z * secz dz
= a²∫ (sec²z - 1) * secz dz
= a²∫ sec³z dz - a²∫ secz dz
= a²M - a²N
M = ∫ sec³z dz = ∫ secz dtanz
= secztanz - ∫ tanz dsecz
= secztanz - ∫ tanz * (secztanz dz)
= secztanz - ∫ (sec²z - 1) * secz dz
= secztanz - M + N
2M = secztanz + N => N = (1/2)secztanz + N/2
原式= (a²/2)secztanz + a²N/2 - a²N
= (a²/2)secztanz - (a²/2)∫ secz dz
= (a²/2)secztanz - (a²/2)ln|secz + tanz| + C
= (a²/2)(x/a)[√(x² -a²)/a] - (a²/2)ln|x/a + √(x² - a²)/a| + C
= (x/2)√(x² - a²) - (a²/2)ln|x + √(x² - a²)| + C
∫√(a^2-x^2)dx
∫√(x^2-a^2)dx
其求解方法如下:
①令x = asinz,dx = acosz dz
∫ √(a^2 - x^2) dx
= ∫ (acosz)(acosz) dz
= a^2/2 • ∫ (1 + cos2z) dz
= a^2/2 • [z + (sin2z)/2] + C
= (a^2/2)arcsin(x/a) + (a^2/2)sinzcosz + C
= (a^2/2)arcsin(x/a) + (a^2/2)(x/a)√(a^2 - x^2)/a + C
= (a^2/2)arcsin(x/a) + (x/2)√(a^2 - x^2) + C
= (1/2)[a^2arcsin(x/a) + x√(a^2 - x^2)] + C
②令x = a * secz,dx = a * secztanz dz,假设x > a
∫ √(x² - a²) dx
= ∫ √(a²sec²z - a²) * (a * secztanz dz)
= a²∫ tan²z * secz dz
= a²∫ (sec²z - 1) * secz dz
= a²∫ sec³z dz - a²∫ secz dz
= a²M - a²N
M = ∫ sec³z dz = ∫ secz dtanz
= secztanz - ∫ tanz dsecz
= secztanz - ∫ tanz * (secztanz dz)
= secztanz - ∫ (sec²z - 1) * secz dz
= secztanz - M + N
2M = secztanz + N => N = (1/2)secztanz + N/2
原式= (a²/2)secztanz + a²N/2 - a²N
= (a²/2)secztanz - (a²/2)∫ secz dz
= (a²/2)secztanz - (a²/2)ln|secz + tanz| + C
= (a²/2)(x/a)[√(x² -a²)/a] - (a²/2)ln|x/a + √(x² - a²)/a| + C
= (x/2)√(x² - a²) - (a²/2)ln|x + √(x² - a²)| + C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询