数学数列问题
1个回答
展开全部
(第一小题)
bn=2-Sn
b(n+1)=2-2S(n+1)
以上两式相减得:
bn-b(n+1)=2S(n+1)-2Sn=2b(n+1)
所以:b(n+1)=(1/3)bn,所以:{bn}为等比数列,公比为q=1/3
而:b1=2-2S1,则:b1=2-2b1,所以:b1=2/3
所以:bn=(2/3)*(1/3)^(n-1)=2/3^n
(第二小题)
a5=a1+4d=5/2
a7=a1+6d=7/2
解得:d=1/2,a1=1/2
所以:an=1/2 +(n-1)*(1/2)=n/2
所以:cn=an*bn=n/3^n,c1=1/3
3*c(n+1) = (n+1)/3^n = cn + (1/3^n)
所以:3*c2 = c1 + (1/3) ------ (1)
3*c3 = c2 + (1/3^2) ------(2)
3*c4 = c3 + (1/3^3) ------(3)
......
3*c(n+1) = cn + (1/3^n) ------(n)
将以上各式相加,得:
3*(c2+c3+...+cn)+3*c(n+1) = (c1+c2+...+cn) + [(1/3)+(1/3^2)+...+(1/3^n)]
3Tn - 3c1 + 3*c(n+1) = Tn + (1/3)*[1-(1/3^n)]/[1-(1/3)]
2Tn = 3c1 - 3*c(n+1) + (1/2)*[1-(1/3^n)] = 1 - (n+1)/3^n + (1/2)*[1-(1/3^n)]
Tn = (3/4) - n/(2*3^n) - 1/(4*3^(n-1))
bn=2-Sn
b(n+1)=2-2S(n+1)
以上两式相减得:
bn-b(n+1)=2S(n+1)-2Sn=2b(n+1)
所以:b(n+1)=(1/3)bn,所以:{bn}为等比数列,公比为q=1/3
而:b1=2-2S1,则:b1=2-2b1,所以:b1=2/3
所以:bn=(2/3)*(1/3)^(n-1)=2/3^n
(第二小题)
a5=a1+4d=5/2
a7=a1+6d=7/2
解得:d=1/2,a1=1/2
所以:an=1/2 +(n-1)*(1/2)=n/2
所以:cn=an*bn=n/3^n,c1=1/3
3*c(n+1) = (n+1)/3^n = cn + (1/3^n)
所以:3*c2 = c1 + (1/3) ------ (1)
3*c3 = c2 + (1/3^2) ------(2)
3*c4 = c3 + (1/3^3) ------(3)
......
3*c(n+1) = cn + (1/3^n) ------(n)
将以上各式相加,得:
3*(c2+c3+...+cn)+3*c(n+1) = (c1+c2+...+cn) + [(1/3)+(1/3^2)+...+(1/3^n)]
3Tn - 3c1 + 3*c(n+1) = Tn + (1/3)*[1-(1/3^n)]/[1-(1/3)]
2Tn = 3c1 - 3*c(n+1) + (1/2)*[1-(1/3^n)] = 1 - (n+1)/3^n + (1/2)*[1-(1/3^n)]
Tn = (3/4) - n/(2*3^n) - 1/(4*3^(n-1))
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询