怎么证明单调有界数列必有极限?

 我来答
帐号已注销
2021-09-07 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:165万
展开全部

因为函数有界,所以函数的值域有界,所以函数值域必定有“最小上界” (supreme), S因为是单调函数,所以对应任意小的e>0, 必定存在N>0使得对于任意x>N, 都有 | f(x) - S | < e满足极限的定义。

设{x[n]}单调有界(不妨设单增),那么存在M>=x[n](任意n)。

所以{x[n]}有上确界,记作l。

对任意正数a,存在自然数N,使得x[N]>l-a。

因为x[n]单增,所以当n>=N时,l-a所以|x[n]-l|所以{x[n]}极限存在,为l。

证明

设数列{xn}单调递增且有上界,接下来用戴德金定理证明{xn}必有极限。

分类讨论,如果{xn}从第N项开始所有的项都相等(即数列有无穷多个相等的项),那么由于数列是单调递增的,当n>N时,有xn=xN,因此对即{xn}收敛到xN。

如果{xn}中只有有限项相等,即数列从某项开始严格单调递增,那么因为{xn}有上界,可取所有{xn}的上界组成一个数集B,并取A=R/B。

手机用户15192
2013-12-20 · 超过62用户采纳过TA的回答
知道答主
回答量:115
采纳率:0%
帮助的人:113万
展开全部
同济课本上对这个定理的说明是: 对于这个定理我们不做证明,只是给出它的在数轴上的几何意义,你可以参看一下. 若要考试这个问题不会考定理证明的,而是要你先用证明某个数列的单调性,然后再证明这个数列的有界性,从而得出这个数列必是收敛的,也就是有极限存在, 然后在数列满足的已知等式两边取极限假设为A,然后求方程解出A,这个A就是数列的极限值. 简单的说,就是跟根据这个准则然后寻找两个条件从而说明极限的存在,然后算出极限值.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
香江鱼7I
2019-03-29 · TA获得超过514个赞
知道小有建树答主
回答量:772
采纳率:72%
帮助的人:54.9万
展开全部

下面介绍单增,单减同理

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
余英勋pe
2019-03-29 · TA获得超过6434个赞
知道大有可为答主
回答量:7857
采纳率:78%
帮助的人:822万
展开全部
因为函数有界,所以函数的值域有界
所以函数值域必定有“最小上界” (supreme), S
因为是单调函数,所以对应任意小的e>0, 必定存在N>0使得对于任意x>N, 都有 | f(x) - S | < e
满足极限的定义.

~回答完毕~
希望对你有帮助
~\(^o^)/~祝学习进步~~~
追问
用极限定义证明需要找到N的值
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式