高等数学,这个题怎么做? 10
2个回答
展开全部
令:x=π-t
∫(0,π) xsin^mxdx
=∫(π,0) (π-t)sin^m(π-t)d(π-t)
=∫(0,π) πsin^mtdt -∫(0,π) tsin^mtdt
= π∫(0,π) sin^mtdt -∫(0,π) xsin^mxdx
【此项左移】
= π/2∫(0,π) sin^mtdt
= π/2∫(0,π/2) sin^mtdt + π/2∫(π/2,π) sin^mtdt
令:x=π-t
= π/2∫(0,π/2) sin^mtdt + π/2∫(0,π/2) sin^mxdx
= π∫(0,π/2) sin^mxdx
① = π[(m-1)!!/m!!] m为奇数;
② = π²/2 [(m-1)!!/m!!] m为偶数。
∫(0,π) xsin^mxdx
=∫(π,0) (π-t)sin^m(π-t)d(π-t)
=∫(0,π) πsin^mtdt -∫(0,π) tsin^mtdt
= π∫(0,π) sin^mtdt -∫(0,π) xsin^mxdx
【此项左移】
= π/2∫(0,π) sin^mtdt
= π/2∫(0,π/2) sin^mtdt + π/2∫(π/2,π) sin^mtdt
令:x=π-t
= π/2∫(0,π/2) sin^mtdt + π/2∫(0,π/2) sin^mxdx
= π∫(0,π/2) sin^mxdx
① = π[(m-1)!!/m!!] m为奇数;
② = π²/2 [(m-1)!!/m!!] m为偶数。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
使用一次洛必达法则,再使用导数的定义
lim(h→0) [f(x+2h)-2f(x+h)+f(x)]/h^2
=lim(h→0) [2f'(x+2h)-2f'(x+h)]/(2h)
=lim(h→0) [f'(x+2h)-f'(x+h)]/h
=lim(h→0) {2×[f'(x+2h)-f'(x)]/(2h)-[f'(x+h)-f'(x)]/h}
=2×lim(h→0)[f'(x+2h)-f'(x)]/(2h)-lim(h→0)[f'(x+h)-f'(x)]/h
=2×f''(x)-f''(x)
=f''(x)
lim(h→0) [f(x+2h)-2f(x+h)+f(x)]/h^2
=lim(h→0) [2f'(x+2h)-2f'(x+h)]/(2h)
=lim(h→0) [f'(x+2h)-f'(x+h)]/h
=lim(h→0) {2×[f'(x+2h)-f'(x)]/(2h)-[f'(x+h)-f'(x)]/h}
=2×lim(h→0)[f'(x+2h)-f'(x)]/(2h)-lim(h→0)[f'(x+h)-f'(x)]/h
=2×f''(x)-f''(x)
=f''(x)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询