x->0
分子
sinx = x-(1/6)x^3 +o(x^3)
e^(sinx)
= 1 + [x-(1/6)x^3] + (1/2)[x-(1/6)x^3]^2 +(1/6)[x-(1/6)x^3]^3 +o(x^3)
= 1 + [x-(1/6)x^3] + (1/2)[x^2+o(x^3)] +(1/6)[x^3+o(x^3)] +o(x^3)
= 1+x +(1/2)x^2 +o(x^3)
e^x = 1+ x +(1/2)x^2 + (1/6)x^3 +o(x^3)
e^x - e^(sinx)
=[1+ x +(1/2)x^2 + (1/6)x^3 +o(x^3)] -[1+x +(1/2)x^2 +o(x^3)]
= (1/6)x^3 +o(x^3)
分母
ln(1+x+x^2)
=(x+x^2) -(1/2)(x+x^2)^2 +o(x^2)
=(x+x^2) -(1/2)x^2 +o(x^2)
=x +(1/2)x^2 +o(x^2)
ln(1-x+x^2)
=(-x+x^2) -(1/2)(-x+x^2)^2 +o(x^2)
=(-x+x^2) -(1/2)x^2 +o(x^2)
=-x +(1/2)x^2 +o(x^2)
ln(1+x+x^2) +ln(1-x+x^2)
=[x +(1/2)x^2 +o(x^2)] +[-x +(1/2)x^2 +o(x^2)]
=x^2 +o(x^2)
x[ln(1+x+x^2) +ln(1-x+x^2)] = x^3 +o(x^3)
lim(x->0) [e^x - e^(sinx) ]/{ x[ ln(1+x+x^2) +ln(1-x+x^2) ] }
=lim(x->0) (1/6)x^3/ x^3
=1/6