3个回答
展开全部
其实机器视觉的发展是相当缓慢的,因为近期计算机硬件发展的很快,CPU性能可以支持很大分辨率图像的计算和很复杂的算法,好像视觉技术也发展的很快一样,其实视觉发展的还是很慢的。
因为机器视觉使用计算机编程技术来模仿人类视觉,模仿人类的辨别能力,检测能力;只是在很粗的粒度上进行模拟,或者说在很浅显的水平上进行模拟,更深层次的东西大家都没弄明白。
比如说一张图画里面有若干条直线,需要数出来有几条,这个对于人来讲太容易了,是吧,但是对于计算机视觉来说,还摸不着头脑,因为计算机没有人类的理解能力,思考能力,他只是能很快的执行加减乘除(乘除也是用加法器凑出来的), 计算机的所有功能说白了,底层只是加减乘除而已,根本没有思维,没有意识,那他怎么去数直线的根数呢?
通过数学方法的霍夫变换来实现。霍夫变换是1960-1970年之间的Paul Hough 发明的,他把空间中的所有点的坐标,转换为许多直线方程,每个点都对应无数个直线方程,共线的点的直线方程就会重复,那么最后数出来那些直线方程的个数超过阈值,那么就是有多少条直线。
看明白了吧,即使数直线个数这么简单的任务也要用这么复杂的数学变化来实现,那么其他的比如玻璃表面的划伤检测呢,或者印刷品表面的漏印检测呢,再或者机器人自动抓取是怎么实现的的,背后都是数学算法在支撑着,讲穿了其实没有什么太深不可测的。
既然是有数学算法支撑,那么数学能解决的问题是有有限的,所以机器视觉能解决的问题也是有限的,本质上说跟人类的视觉是有根本性差别的。这些差别体现在,人类可以理解非常复杂的物体,可以在非常复杂的背景中,准确找出千变万化的物体(例如手绢,例如糖果),这些对人来说毫不费力,但是机器视觉却做不出来,或者说做不好。因为它缺少理解力
一旦方程无法解决,那就没办法了。
虽然现在深度学习很火,好像遍地开花一样,但是深度学习也并没有产生人类的理解能力,它也只是一种复杂的分类器而已,它用几百万上千万个参数去迭代拟合复杂的图片,以便得到正确的分类结果,但是一旦系统训练好了,他遇到新的类别还是会分错,他没有自动学习能力,并且在复杂的有噪声的背景中,识别目标的能力还是远低于人,这都是数学方法的限制带来的。
那么回到主题,机器视觉是否已经无所不能,开始全面代替人工呢? 答案是否定的。
但是可以替代那些简单重复性的人工劳动,比如在饮料灌装线上,挑出没有灌满的瓶子;在电缆生产车间,检查电缆表面是否有破损,或者在高速行进的单一颜色布匹上,检查出断丝。这些都是现在数学可以解决的问题,用机器视觉也是非常合适的。
如果面对的任务不是这些简单重复性的,例如灾区搜救,照看病人,捉拿罪犯,教育孩子这些需要一定智力的活动机器就做不好了。可能等以后真正的智能出来了,才能做好。
因为机器视觉使用计算机编程技术来模仿人类视觉,模仿人类的辨别能力,检测能力;只是在很粗的粒度上进行模拟,或者说在很浅显的水平上进行模拟,更深层次的东西大家都没弄明白。
比如说一张图画里面有若干条直线,需要数出来有几条,这个对于人来讲太容易了,是吧,但是对于计算机视觉来说,还摸不着头脑,因为计算机没有人类的理解能力,思考能力,他只是能很快的执行加减乘除(乘除也是用加法器凑出来的), 计算机的所有功能说白了,底层只是加减乘除而已,根本没有思维,没有意识,那他怎么去数直线的根数呢?
通过数学方法的霍夫变换来实现。霍夫变换是1960-1970年之间的Paul Hough 发明的,他把空间中的所有点的坐标,转换为许多直线方程,每个点都对应无数个直线方程,共线的点的直线方程就会重复,那么最后数出来那些直线方程的个数超过阈值,那么就是有多少条直线。
看明白了吧,即使数直线个数这么简单的任务也要用这么复杂的数学变化来实现,那么其他的比如玻璃表面的划伤检测呢,或者印刷品表面的漏印检测呢,再或者机器人自动抓取是怎么实现的的,背后都是数学算法在支撑着,讲穿了其实没有什么太深不可测的。
既然是有数学算法支撑,那么数学能解决的问题是有有限的,所以机器视觉能解决的问题也是有限的,本质上说跟人类的视觉是有根本性差别的。这些差别体现在,人类可以理解非常复杂的物体,可以在非常复杂的背景中,准确找出千变万化的物体(例如手绢,例如糖果),这些对人来说毫不费力,但是机器视觉却做不出来,或者说做不好。因为它缺少理解力
一旦方程无法解决,那就没办法了。
虽然现在深度学习很火,好像遍地开花一样,但是深度学习也并没有产生人类的理解能力,它也只是一种复杂的分类器而已,它用几百万上千万个参数去迭代拟合复杂的图片,以便得到正确的分类结果,但是一旦系统训练好了,他遇到新的类别还是会分错,他没有自动学习能力,并且在复杂的有噪声的背景中,识别目标的能力还是远低于人,这都是数学方法的限制带来的。
那么回到主题,机器视觉是否已经无所不能,开始全面代替人工呢? 答案是否定的。
但是可以替代那些简单重复性的人工劳动,比如在饮料灌装线上,挑出没有灌满的瓶子;在电缆生产车间,检查电缆表面是否有破损,或者在高速行进的单一颜色布匹上,检查出断丝。这些都是现在数学可以解决的问题,用机器视觉也是非常合适的。
如果面对的任务不是这些简单重复性的,例如灾区搜救,照看病人,捉拿罪犯,教育孩子这些需要一定智力的活动机器就做不好了。可能等以后真正的智能出来了,才能做好。
梅卡曼德(北京)机器人科技有限公司_
2023-03-23 广告
2023-03-23 广告
在机器视觉领域做得比较好的企业,推荐您了解下梅卡曼德。梅卡曼德深耕AI+3D视觉领域,始终致力于以高性能的3D视觉产品、高效的解决方案以及完备的服务支持助力各行业提高生产效率和生产质量。梅卡曼德作为AI+3D市场专家,聚焦客户实际场景需求。...
点击进入详情页
本回答由梅卡曼德(北京)机器人科技有限公司_提供
展开全部
机器视觉是人工智能正在快速发展的一个分支。简单说来,机器视觉就是用机器代替人眼来做测量和判断。
机器视觉系统是通过机器视觉产品(即图像摄取装置,分CMOS和CCD两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,得到被摄目标的形态信息,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。
机器视觉是一项综合技术,包括图像处理、机械工程技术、控制、电光源照明、光学成像、传感器、模拟与数字视频技术、计算机软硬件技术(图像增强和分析算法、图像卡、I/O卡等)。一个典型的机器视觉应用系统包括图像捕捉、光源系统、图像数字化模块、数字图像处理模块、智能判断决策模块和机械控制执行模块。
机器视觉系统最基本的特点就是提高生产的灵活性和自动化程度。机器视觉让机器拥有了像人一样的视觉功能,能更好地实现各种检测、测量、识别和判断功能。
随着各类技术的不断完善,机器视觉下游应用领域也不断拓宽,从最开始主要用于电子装配检测,已发展到在识别、检测、测量和机械手定位等越来越广泛的工业应用领域。速度快、信息量大、功能多也日益成为机器视觉技术的主要特点。
机器视觉系统是通过机器视觉产品(即图像摄取装置,分CMOS和CCD两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,得到被摄目标的形态信息,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。
机器视觉是一项综合技术,包括图像处理、机械工程技术、控制、电光源照明、光学成像、传感器、模拟与数字视频技术、计算机软硬件技术(图像增强和分析算法、图像卡、I/O卡等)。一个典型的机器视觉应用系统包括图像捕捉、光源系统、图像数字化模块、数字图像处理模块、智能判断决策模块和机械控制执行模块。
机器视觉系统最基本的特点就是提高生产的灵活性和自动化程度。机器视觉让机器拥有了像人一样的视觉功能,能更好地实现各种检测、测量、识别和判断功能。
随着各类技术的不断完善,机器视觉下游应用领域也不断拓宽,从最开始主要用于电子装配检测,已发展到在识别、检测、测量和机械手定位等越来越广泛的工业应用领域。速度快、信息量大、功能多也日益成为机器视觉技术的主要特点。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询