参数方程求二阶导

带详细过程... 带详细过程 展开
 我来答
K官人
2019-09-19
知道答主
回答量:25
采纳率:0%
帮助的人:2.6万
展开全部
不可以的。
求y对x的二阶导数仍然可以看作是参数方程确定的函数的求导方法,
因变量由y换作dy/dx,自变量还是x,
所以,
y对x的二阶导数 = dy/dx对t的导数 ÷ x对t的导数
dy/dt=1/(1+t^2)
dx/dt=1-2t/(1+t^2)=(1+t^2-2t)/(1+t^2)
所以,dy/dx=1/(1+t^2-2t)
d(dy/dx)/dt=[1/(1+t^2-2t)]'=-(2t-2)/(1+t^2-2t))^2
所以,
d2y/dx2=d(dy/dx)/dt ÷ dx/dt
=-(2t-2)/(1+t^2-2t))^2 ÷ (1+t^2-2t)/(1+t^2)
=(2-2t)(1+t^2)/(1+t^2-2t)^3
拓展资料:
二阶导数,是原函数导数的导数,将原函数进行二次求导。
一般的,函数y=f(x)的导数y‘=f’(x)仍然是x的函数,则y’=f‘(x)的导数叫做函数y=f(x)的二阶导数。
在图形上,它主要表现函数的凹凸性
二阶导数是比较理论的、比较抽象的一个量,它不像一阶导数那样有明显的几何意义,因为它表示的是一阶导数的变化率。在图形上,它主要表现函数的凹凸性,直观的说,函数是向上突起的,还是向下突起的。
定理:设f(x)在[a,b]上连续,在(a,b)内具有一阶和二阶导数,那么,
(1)若在(a,b)内f''(x)>0,则f(x)在[a,b]上的图形是凹的;
(2)若在(a,b)内f''(x)<0,则f(x)在[a,b]上的图形是凸的。
若在定义域内一阶导数为0,则该点是原函数定义域内的极值点或拐点。
如在定义域内二阶导数为0,则该点是一阶函数定义域内的极值点或拐点。
在一定情况下,二阶导数为0时的点,有可能为原函数的零点。
二阶导数一般是表示凹凸性,但是在国内的不同教材中有不同的叫法。比如在同济大学的教材中,如下图叫做上凹,而其他教材中叫做凹函数
夕资工业设备(上海)
2024-12-11 广告
夕资工业设备(上海)有限公司的读数头315420-04是一款高性能的测量 device,专为工业环境中的精确测量而设计。这款读数头具有高分辨率和高稳定性,能够提供准确的测量数据,是保证产品质量和生产效率的重要工具。此外,该读数头还具有易于安... 点击进入详情页
本回答由夕资工业设备(上海)提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式