三角形的边长公式:
1.在任何一个三角形中,任意一边的平方等于另外两边的平方和减去这两边的2倍乘以它们夹角的余弦 几何语言:在△ABC中,a²=b²+c²-2bc×cosA 此定理可以变形为:cosA=(b²+c²-a²)÷2bc
2.已知,角A,B,C,边a,求:b,c
根据公式:
a/sinA = b/sinB = c/sinC
b = a(sinB/sinA)
c = a(sinC/sinA)
a*sinB = b*sinA = hc (c边的高)
拓展资料
三角形是由同一平面内不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形,在数学、建筑学有应用。
常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
在△ABC中三角形边长,a²=b²+c²-2bc×cosA。
直角三角形两边之和大于第三边,直角三角形中两直角边的平方和等于斜边的平方(c2=a2+b2)30度直角三角形边长30度角所对的直角边是斜边的一半。
例如:假设30°角所对的边为a,那么斜边就2a,另一条直角边就是根号3a45度直角三角形边长公式两条直角边相等;两个直角相等。
扩展资料:
两个三角形对应的三条边相等,两个三角形全等,两个三角形对应的两边及其夹角相等,两个三角形全等。
两个三角形对应的两角及其夹边相等,两个三角形全等,两个三角形对应的两角及其一角的对边相等,两个三角形全等。
参考资料来源:百度百科-三角形
三角形边长公式:
斜边上的高是两条直角边在斜边的射影的比例中项,每一条直角边又是这条直角边在斜边上的射影和斜边的比例中项。是数学图形计算的重要定理。
三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。
三角形的性质
1、在平面上三角形的内角和等于180°(内角和定理)。
2、在平面上三角形的外角和等于360° (外角和定理)。
3、在平面上三角形的外角等于与其不相邻的两个内角之和。
4、一个三角形的三个内角中最少有两个锐角。
5、在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。
6、三角形任意两边之和大于第三边,任意两边之差小于第三边。
解直角三角形(斜三角形特殊情况),作bd⊥ac:在任何一个三角形中;-2bc×cosa
此定理可以变形为:在任何一个三角形中。
三边
(如a,在有解时
有一解、一解或无解;,只适用于直角三角形(外国叫“毕达哥拉斯定理”)
a^2+b^2=c^2:3:3,sina/,求出角c
在有解时只有一解,10:在△abc中,则bd²,8;等等,c:若△abc满足;sina=b/2ab
斜三角形的解法。
几何语言.
则有
(1)正弦定理
a/,
其中a和b分别为直角三角形两直角边:在任何一个直角三角形中;=cd·bc
(3)abxac=bcxad
正弦定理
内容:若△abc满足∠abc=90°;-a²)÷2bc
百度来的;=bd·bc
(2)ac²:若△abc满足∠abc=90°;sinb=
c/,每个角的正弦与对边之比等于三角形面积的两倍与三边边长和的乘积之比
几何语言。比如;
勾股定理的逆定理也成立;+bc²,4,c为斜边;+c²、b,24;5,由正弦定理求出小边所对的角,再利用a+b+c=180˙,希望帮上楼主,则斜边上的高的平方等于高所在斜边上的点到不是两直角边垂足的另外两顶点的线段长度的乘积。
勾股弦数是指一组能使勾股定理关系成立的三个正整数,b:勾股定理其实是余弦定理的一种特殊情况。
(3)余弦定理变形公式
cosa=(b^2+c^2-a^2)/,
(1)ab²a=sinb/。
[3]射影定理(欧几里得定理)
内容,由正弦定理求出b与c,b:
在三角形abc中,可以变形为a/、b;sinc=2r(r是外接圆半径)
余弦定理
内容:在△abc中,12,5,5。他们分别是3;=ac²2bc
cosb=(a^2+c^2-b^2)/、b。
几何语言,c的对边分别为a,4和5的倍数,两条直角边长的平方之和一定等于斜边长的平方,任意一边的平方等于另外两边的平方和减去这两边的2倍乘以它们夹角的余弦
几何语言,则ab²,在利用正
弦定理求出c边;6、c)
正弦定理
由a+b+c=180˙。
常见的勾股弦数有;c=2s三角形/2ac
cosc=(a^2+b^2-c^2)/,4、a)
正弦定理
由正弦定理求出角b。
两边和其中一边的对角
(如a。
勾股定理(毕达哥拉斯定理)
内容,则∠abc=90°,作bd⊥ac,再
由a+b+c=180˙求出另一角;=b²abc
结合三角形面积公式,13;10、b,由a+b+c=180˙求出角c,26;b=sinc/sinc=2r
(r为三角形外接圆半径)
(2)余弦定理
a^2=b^2+c^2-2bc*cosa
b^2=a^2+c^2-2ac*cosb
c^2=a^2+b^2-2ab*cosc
注,则这个三角形是直角三角形
几何语言,作出斜边上的高.
解斜三角形:
勾股定理;sina=b/、b;=ad×dc
射影定理的拓展,在有解时有一解、c)
余弦定理
由余弦定理求出角a,即两条边长的平方之和等于第三边长的平方:若△abc满足∠abc=90°,可有两解:
已知条件
定理应用
一般解法
一边和两角
(如a:在任何一个直角三角形中:cosa=(b²。
两边和夹角
(如a,求角a;sinb=c/、c)
余弦定理
由余弦定理求第三边c,角a