2个回答
展开全部
如果把分式拆分成两项,第一项是偶函数,第二项是奇函数,那麼第二项的积分为0,第一项只需要在[0,1]上积分再乘以2就行.
令x=sint,t∈[0,π/2],则√(1-x²)=cost,dx=costdt
原式=2∫[0,π/2]2sin²t/(1+cost)*costdt
=4∫[0,π/2](1-cos²t)/(1+cost)*costdt
=4∫[0,π/2](1-cost)*costdt
=4∫[0,π/2]costdt-4∫[0,π/2]cos²tdt
=4-4*(x/2+1/4*sin2x)|[0,π/2]
=4-π
令x=sint,t∈[0,π/2],则√(1-x²)=cost,dx=costdt
原式=2∫[0,π/2]2sin²t/(1+cost)*costdt
=4∫[0,π/2](1-cos²t)/(1+cost)*costdt
=4∫[0,π/2](1-cost)*costdt
=4∫[0,π/2]costdt-4∫[0,π/2]cos²tdt
=4-4*(x/2+1/4*sin2x)|[0,π/2]
=4-π
北京埃德思远电气技术咨询有限公司
2023-08-25 广告
2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
展开全部
let
f(x) = x/[1+√(1-x^2)]
f(-x) =-f(x)
=>∫(-1->1) x/[1+√(1-x^2)] dx =0
let
x=sinu
dx=cosu du
x=0, u=0
x=1, u=π/2
∫(-1->1) (2x^2+x)/[1+√(1-x^2)] dx
=∫(-1->1) 2x^2/[1+√(1-x^2)] dx
=4∫(0 ->1) x^2/[1+√(1-x^2)] dx
=4∫(0 ->π/2) [ (sinu)^2/(1+cosu) ] [cosu du ]
=4∫(0 ->π/2) (1-cosu) cosu du
=2∫(0 ->π/2) [2cosu -1 - cos2u ]du
=2[ 2sinu -u -(1/2)sin2u]|(0 ->π/2)
=2( 2 - π/2)
=4-π
f(x) = x/[1+√(1-x^2)]
f(-x) =-f(x)
=>∫(-1->1) x/[1+√(1-x^2)] dx =0
let
x=sinu
dx=cosu du
x=0, u=0
x=1, u=π/2
∫(-1->1) (2x^2+x)/[1+√(1-x^2)] dx
=∫(-1->1) 2x^2/[1+√(1-x^2)] dx
=4∫(0 ->1) x^2/[1+√(1-x^2)] dx
=4∫(0 ->π/2) [ (sinu)^2/(1+cosu) ] [cosu du ]
=4∫(0 ->π/2) (1-cosu) cosu du
=2∫(0 ->π/2) [2cosu -1 - cos2u ]du
=2[ 2sinu -u -(1/2)sin2u]|(0 ->π/2)
=2( 2 - π/2)
=4-π
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询