4个回答
展开全部
let
tanx = √2tanu
(secx)^2 dx = √2(secu)^2 du
dx ={ √2(secu)^2/[ 1+2(tanu)^2 ] }du
2(secu)^3
=2(secu).[1+ (tanu)^2]
= (secu).[1+ 2(tanu)^2] + secu
∫√[2+(tanx)^2] dx
=∫√2. secu . { √2(secu)^2/[ 1+2(tanu)^2 ] }du
=2∫ (secu)^3/[ 1+2(tanu)^2 ] }du
= ∫secu du + ∫ secu/[1+ 2(tanu)^2] du
=ln|secu +tanu| + ∫ cosu /[ (cosu)^2+ 2(sinu)^2] du
=ln|secu +tanu| + ∫ cosu /[ 1+ (sinu)^2] du
=ln|secu +tanu| + ∫ dsinu /[ 1+ (sinu)^2]
=ln|secu +tanu| + arctan(sinu) + C
tanx = √2tanu
(secx)^2 dx = √2(secu)^2 du
dx ={ √2(secu)^2/[ 1+2(tanu)^2 ] }du
2(secu)^3
=2(secu).[1+ (tanu)^2]
= (secu).[1+ 2(tanu)^2] + secu
∫√[2+(tanx)^2] dx
=∫√2. secu . { √2(secu)^2/[ 1+2(tanu)^2 ] }du
=2∫ (secu)^3/[ 1+2(tanu)^2 ] }du
= ∫secu du + ∫ secu/[1+ 2(tanu)^2] du
=ln|secu +tanu| + ∫ cosu /[ (cosu)^2+ 2(sinu)^2] du
=ln|secu +tanu| + ∫ cosu /[ 1+ (sinu)^2] du
=ln|secu +tanu| + ∫ dsinu /[ 1+ (sinu)^2]
=ln|secu +tanu| + arctan(sinu) + C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询