如何求函数周期

有没有什么公式,技巧一类的,高一必修一用,谢谢😜... 有没有什么公式,技巧一类的,高一必修一用,谢谢😜 展开
 我来答
教育小百科达人
2018-11-06 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:462万
展开全部

对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。

事实上,任何一个常数kT(k∈Z,且k≠0)都是它的周期。并且周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期。

1,做变量替换令y=x+1 ,得到 f(y)= -f(y+2)

2,再一次套用这个式子,得到f(y+2)=-f(y+4)

3,两个式子结合,得到f(y)=f(y+4),所以,周期是4

关键的地方是:凑出f(x)=f(x+T),这时候T就是周期。而上面3个步骤就是往这个方向凑

扩展资料:

1 .周期函数:对于函数f(x),如果存在非零常数T,使得当x取定义域D内的任何值时,都有f(x+T)=f(x),那么就称函数f(x)为周期函数,称T为这个函数的 一个周期. 

2.最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫作函数f(x)的最小正周期. 

3.若函数f(x)具有周期性,且非零常数T是f(x)的一个周期, 则kT(其中k是不等于零的任意整数)也是f(x)的周期.

4.若数列{an}满足:对于任意的正整数n,都有

则称数列{an}是以K为周期的周期数列。

函数周期性的判定与应用

(1)判定:判断函数的周期性只需证明f(x+T)=f(x)(T≠0)便可证明函数是周期函数,且周期为T。

(2)应用:根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T是函数的周期,则kT(k∈Z且k≠0)也是函数的周期。

蓝蓝蓝1234456
高粉答主

2018-10-11 · 每个回答都超有意思的
知道小有建树答主
回答量:1257
采纳率:100%
帮助的人:29.1万
展开全部

求周期,可以把一个函数式子化成f(x)=f(x+a)的这样形式,那么它的周期就是a (当然a>0),

例如 下面为一系列的2a为周期的函数

f(x+a)=-f(x) 所以有f(x+a+a)=-f(x+a)=f(x) 就化解到 f(x)=f(x+2a)的形式了,关键是运用整体思想,去代换。

函数的周期性定义:若存在常数T,对于定义域内的任一x,使f(x)=f(x+T) 恒成立,则f(x)叫做周期函数,T叫做这个函数的一个周期。

扩展资料:

函数周期性的关键的几个字“有规律地重复出现”。当自变量增大任意实数时(自变量有意义),函数值有规律的重复出现

假如函数f(x)=f(x+T)(或f(x+a)=f(x-b)其中a+b=T),则说T是函数的一个周期.T的整数倍也是函数的一个周期。

出示函数周期性的定义:对于函数y=f(x),假如存在一个非零常数T,使得当x取定义域内的任何值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。

“当自变量增大某一个值时,函数值有规律的重复出现”这句话用数学语言的表达.

2、定义:对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)

概念的具体化:

当定义中的f(x)=sinx或cosx时,思考T的取值。

T=2kπ(k∈Z且k≠0)

所以正弦函数和余弦函数均为周期函数,且周期为 T=2kπ(k∈Z且k≠0)

展示正、余弦函数的图象。

周期函数的图象的形状随x的变化周期性的变化。(用课件加以说明。)

强调定义中的“当x取定义域内的每一个值”

令(x+T)2=x2,则x2+2xT+T2=x2

所以2xT+T2=0, 即T(2x+T)=0

所以T=0或T=-2x

强调定义中的“非零”和“常数”。

例:三角函数sin(x+T)=sinx

cos(x+T)=cosx中的T取2π

3、最小正周期的概念:

对于一个函数f(x),如果它所有的周期中存在一个最小的正数,那么这个最小正数叫f(x)的最小正周期。

对于正弦函数y=sinx, 自变量x只要并且至少增加到x+2π时,函数值才能重复取得。所以正弦函数和余弦函数的最小正周期是2π。(说明:如果以后无特殊说明,周期指的就是最小正周期。)

在函数图象上,最小正周期是函数图象重复出现需要的最短距离。

参考资料:百度百科-函数周期性

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
2018-10-09 · TA获得超过33.9万个赞
知道小有建树答主
回答量:403
采纳率:0%
帮助的人:14.8万
展开全部

对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。

事实上,任何一个常数kT(k∈Z,且k≠0)都是它的周期。并且周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期。

1,做变量替换令y=x+1 ,得到 f(y)= -f(y+2)

2,再一次套用这个式子,得到f(y+2)=-f(y+4)

3,两个式子结合,得到f(y)=f(y+4),所以,周期是4

关键的地方是:凑出f(x)=f(x+T),这时候T就是周期。而上面3个步骤就是往这个方向凑

扩展资料:

设f(x)是定义在数集M上的函数,如果存在非零常数T具有性质:f(x+T)=f(x),则称f(x)是数集M上的周期函数,常数T称为f(x)的一个周期。如果在所有正周期中有一个最小的,则称它是函数f(x)的最小正周期。

由定义可得:周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期,譬如狄利克雷函数。

周期函数的性质 共分以下几个类型:

(1)若T(≠0)是f(x)的周期,则-T也是f(x)的周期。

(2)若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。

(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。

(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。

(5)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。

(6)周期函数f(x)的定义域M必定是至少一方无界的集合。

参考资料:百度百科-周期函数

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
2018-10-11 · TA获得超过82.9万个赞
知道大有可为答主
回答量:2602
采纳率:100%
帮助的人:168万
展开全部

令t=x+1,即f(t)=-f(t+2),用t代换t+2:即-f(t+2)=-(-f(t+2+2))=f(t+4)
已化为f(t)=f(t+b)的形式,则t为周期,即得:f(t)=f(t+4),所以周期为4。

像这样的类型,一般用换元法,等式替代成f(t)=f(t+b)的形式。

对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。

事实上,任何一个常数kT(k∈Z,且k≠0)都是它的周期。并且周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期。

扩展资料:

周期函数的性质共分以下几个类型:

(1)若T(≠0)是f(x)的周期,则-T也是f(x)的周期。

(2)若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。

(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。

(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。

(5)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。

(6)周期函数f(x)的定义域M必定是至少一方无界的集合。 

参考资料:百度百科——周期函数

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
蔷祀
高粉答主

2018-10-12 · 关注我不会让你失望
知道小有建树答主
回答量:552
采纳率:100%
帮助的人:14.3万
展开全部

令t=x-1;则f(t)=f(t+4)周期为4。

求周期函数的周期,可以直接利用定义来求,也可以利用基本周期函数的周期间接来求。基本周期函数的周期是:y=sinx  、y=cosx的周期是2π,y=tanx的周期是π。

比如: y=sin3x,    y=sin3x=sin(3x+2π)=sin[3(x+2π/3)

∴  y=sin3x的周期是 2π/3。

再比如说:y=sin²x     y=sin²x =1/2(1-cos2x)     cos2x的周期是π,  

∴ y=sin²x 的周期是 π。

扩展资料

周期函数的性质 共分以下几个类型:

(1)若T(≠0)是f(x)的周期,则-T也是f(x)的周期。

(2)若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。

(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。

(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。

(5)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。

(6)周期函数f(x)的定义域M必定是至少一方无界的集合。

参考资料周期函数_百度百科

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(6)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式