怎么求3次函数?

 我来答
由智薛申
2020-03-24 · TA获得超过3.6万个赞
知道小有建树答主
回答量:1.4万
采纳率:29%
帮助的人:817万
展开全部
一元三次方程么?ax^3+bx^2+cx+d=0
(^表示次方运算)
原则:就是化3次为2次,因为我们会解2次函数方程,主要方法就是提公因式。
题一:如果d=0,则x=0或ax^2+bx+c=0
题二:分组分解形如ax^3+nax^2+ax+na=0
ax^2(x+n)+a(x+n)=0
(ax^2+a)(x+n)=0
这样会解了吧
求一元三次函数?f(x)=ax^3+bx^2+cx+d
求f(x)的极值?增减区间?
原则就是先有f(x)导数f(x)'=1/3(ax^2)+1/2(bx)+c=0
另f(x)'=0求出极值点,f(x)'<0减f(x)'>0增。
求多元三次函数我们就不讨论了。
止玉花奚珍
2019-11-04 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:28%
帮助的人:1003万
展开全部
1.三次函数求极值:
三次函数的导函数为0,求出极值点坐标,再判断极值点左右侧的单调性
如果左侧递减,右侧递增,则该极值点为极小值点。如果左侧递增,右侧递减,则该极值点为极大值。
2.
用设参法可求的最终解。
以一道四次函数解析为例:
X^4-4X^2+4=0
设X^2为t
则该三次函数转化成为t^2-4t+4=0
则可按平时的二次函数求解得到t=2
所以即X^2=2
所以最终解得X等于正根号下2,或负根号下2
2
已知三次函数f(x)的导函数是f'(x),且f(0)=3,f‘(0)=0,f'(1)=-3,f'(2)=0,求函数f(x).
设三次函数为f(x)=ax^3+bx^2+cx+d
故,导数为f'(x)=3ax^2+2bx+c
由题意知,d=3
c=0
3a+2b=-3
12a+6b=0
解得:a=3,b=-6
故函数是f(x)=3x^3-6x^2+3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
一路风流好么
2018-09-22 · TA获得超过766个赞
知道小有建树答主
回答量:150
采纳率:0%
帮助的人:177万
展开全部
零点求法
求函数的零点可用盛金公式、盛金判别法、或传统解法
三次方程应用广泛。用根号解一元三次方程,虽然有著名的卡尔丹公式,并有相应的判别法,但使用卡尔丹公式解题比较复杂,缺乏直观性。范盛金推导出一套直接用a、b、c、d表达的较简明形式的一元三次方程的一般式新求根公式,并建立了新判别法。
1.盛金公式

传统解法
此外,一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d=0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。
一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下:
⑴将x=A^(1/3)+B^(1/3)两边同时立方可以得到
⑵x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))
⑶由于x=A^(1/3)+B^(1/3),所以⑵可化为 x^3=(A+B)+3(AB)^(1/3)x,移项可得
⑷x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知
⑸-3(AB)^(1/3)=p,-(A+B)=q,化简得
⑹A+B=-q,AB=-(p/3)^3
⑺这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而⑹则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即
⑻y1+y2=-(b/a),y1*y2=c/a
⑼对比⑹和⑻,可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a
⑽由于形为ay^2+by+c=0的一元二次方程求根公式为
y1=-(b+(b^2-4ac)^(1/2))/(2a)
y2=-(b-(b^2-4ac)^(1/2))/(2a)
可化为
⑾y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2)
y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2)
将⑼中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入⑾可得
⑿A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2)
B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2)
⒀将A,B代入x=A^(1/3)+B^(1/3)得
⒁x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)
式 ⒁只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式