展开全部
令t = arcsinx, dx = cost dt
I = ∫ t sin²t dt
= (1/2) ∫ t (1﹣cos2t) dt
= (1/4) t² ﹣(t/4)sin2t + (1/4) ∫ sin2t dt
= (1/4) t² ﹣(t/4)sin2t ﹣ (1/8) cos2t + C
= (1/4)arcsin²x ﹣(1/2) x √(1-x²) arcsinx ﹣ (1/8) (1﹣2x²) + C
= (1/4)arcsin²x ﹣(1/2) x √(1-x²) arcsinx + (1/4) x² + C
I = ∫ t sin²t dt
= (1/2) ∫ t (1﹣cos2t) dt
= (1/4) t² ﹣(t/4)sin2t + (1/4) ∫ sin2t dt
= (1/4) t² ﹣(t/4)sin2t ﹣ (1/8) cos2t + C
= (1/4)arcsin²x ﹣(1/2) x √(1-x²) arcsinx ﹣ (1/8) (1﹣2x²) + C
= (1/4)arcsin²x ﹣(1/2) x √(1-x²) arcsinx + (1/4) x² + C
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询