高一数学题、
1个回答
展开全部
解:(1)∵一个对称中心到最近的对称轴的距离为π/4
∴T=π/4×4=π
∵w=2π/T
∴w=2
∵f(x)=sin(wx+∮)过点(-π/6,0)
∴sin(-π/6×2+∮)=0
sin(-π/3+∮)=0
∵|∮|<π/2
∴∮=π/3
∴f(x)=sin(2x+π/3)
当2kπ-π/2≤2x+π/3≤2kπ+π/2
(k∈Z)时
f(x)为增函数
∴2kπ-5π/6≤2x≤2kπ+π/6
(k∈Z)
kπ-5π/12≤x≤kπ+π/12
(k∈Z)
∴增区间为[kπ-5π/12,kπ+π/12](k∈Z)
(2)∵f(a/2)=3/5
∴f(a/2)=sin(a+π/3)=3/5
∴sina•cos(π/3)+sin(π/3)•cosa=3/5
∵sin2a+cos2a=1
解:得
sina1=(3-4√3)/10
sina2=(3+4√3)/10
cosa1=(3√3+4)/10
cosa2=(3√3-4)/10
∵f(a/2)=3/5
∴sin(a+π/3)=3/5
∴2kπ≤a+π/3≤2kπ+π
∴2kπ-π/3≤a≤2kπ+2π/3
∵a∈[π/6,5π/3]
∴a∈[π/6,2π/3]
∵sina在π/2时有最大值1
且π/2-π/6>2π/3-π/2
∴sina∈[0.5,1]
∵sina1=(3-4√3)/10<0
∴sina=(3+4√3)/10
∴T=π/4×4=π
∵w=2π/T
∴w=2
∵f(x)=sin(wx+∮)过点(-π/6,0)
∴sin(-π/6×2+∮)=0
sin(-π/3+∮)=0
∵|∮|<π/2
∴∮=π/3
∴f(x)=sin(2x+π/3)
当2kπ-π/2≤2x+π/3≤2kπ+π/2
(k∈Z)时
f(x)为增函数
∴2kπ-5π/6≤2x≤2kπ+π/6
(k∈Z)
kπ-5π/12≤x≤kπ+π/12
(k∈Z)
∴增区间为[kπ-5π/12,kπ+π/12](k∈Z)
(2)∵f(a/2)=3/5
∴f(a/2)=sin(a+π/3)=3/5
∴sina•cos(π/3)+sin(π/3)•cosa=3/5
∵sin2a+cos2a=1
解:得
sina1=(3-4√3)/10
sina2=(3+4√3)/10
cosa1=(3√3+4)/10
cosa2=(3√3-4)/10
∵f(a/2)=3/5
∴sin(a+π/3)=3/5
∴2kπ≤a+π/3≤2kπ+π
∴2kπ-π/3≤a≤2kπ+2π/3
∵a∈[π/6,5π/3]
∴a∈[π/6,2π/3]
∵sina在π/2时有最大值1
且π/2-π/6>2π/3-π/2
∴sina∈[0.5,1]
∵sina1=(3-4√3)/10<0
∴sina=(3+4√3)/10
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询