微分方程通解
展开全部
解微分方程y'-3xy=2x
解:这是一个典型的一阶线性微分方程。其基本解法(程式化解法)如下:
先求一阶线性齐次方程y'-3xy=0的通解:
dy/dx=3xy;分离变量得dy/y=3xdx;积分之,得lny=(3/2)x²+lnc₁;即得y=c₁e^[(3/2)x²;
将c₁换成x的函数u,即y=ue^[(3/2)x²].............(1)
将(1)的两边对x取导数得:dy/dx=y'=(du/dx)e^[(3/2)x²]+3xue^[(3/2)x²]........(2)
将(1)和(2)代入原方程得:
(du/dx)e^[(3/2)x²]+3xue^[(3/2)x²]-3xue^[(3/2)x²]=2x
故得(du/dx)e^[(3/2)x²]=2x;分离变量得du=2xe^[-(3/2)x²]dx;
积分之得u=∫2xe^[-(3/2)x²]dx=(-2/3)∫de^[-(3/2)x²]=-(2/3)e^[-(3/2)x²]+c
代入(1)式即得通解y={-(2/3)e^[-(3/2)x²]+c}e^[(3/2)x²]=-2/3+ce^[(3/2)x²]
【此解法谓之“参数变异法”或“常数变异法”】
解:这是一个典型的一阶线性微分方程。其基本解法(程式化解法)如下:
先求一阶线性齐次方程y'-3xy=0的通解:
dy/dx=3xy;分离变量得dy/y=3xdx;积分之,得lny=(3/2)x²+lnc₁;即得y=c₁e^[(3/2)x²;
将c₁换成x的函数u,即y=ue^[(3/2)x²].............(1)
将(1)的两边对x取导数得:dy/dx=y'=(du/dx)e^[(3/2)x²]+3xue^[(3/2)x²]........(2)
将(1)和(2)代入原方程得:
(du/dx)e^[(3/2)x²]+3xue^[(3/2)x²]-3xue^[(3/2)x²]=2x
故得(du/dx)e^[(3/2)x²]=2x;分离变量得du=2xe^[-(3/2)x²]dx;
积分之得u=∫2xe^[-(3/2)x²]dx=(-2/3)∫de^[-(3/2)x²]=-(2/3)e^[-(3/2)x²]+c
代入(1)式即得通解y={-(2/3)e^[-(3/2)x²]+c}e^[(3/2)x²]=-2/3+ce^[(3/2)x²]
【此解法谓之“参数变异法”或“常数变异法”】
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
求微分方程
xy'-lny=0的通解
解:分离变量得:dy/(lny)=dx/x;
积分之得:∫dy/(lny)=lnx+lnc=ln(cx)
故x=(1/c)e^∫dy/(lny);
其中积分∫dy/(lny)不能表为有限形式,也就是通常说的积不出来。
xy'-lny=0的通解
解:分离变量得:dy/(lny)=dx/x;
积分之得:∫dy/(lny)=lnx+lnc=ln(cx)
故x=(1/c)e^∫dy/(lny);
其中积分∫dy/(lny)不能表为有限形式,也就是通常说的积不出来。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询