一道初中数学正方形几何证明题,难啊~求助~~~

P为正方形ABCD的边CD上任一点,BG垂直AP于G,在AP上取点E,使AG=GE,连接BE、CE1)求证:BE=BC2)若角CBE的平分线交AP的延长线于N点,连接DN... P为正方形ABCD的边CD上任一点,BG垂直AP于G,在AP上取点E,使AG=GE,连接BE、CE 1)求证:BE=BC 2)若角CBE的平分线交AP的延长线于N点,连接DN,求证:BN+DN=根号2倍的AN (最主要是第二问~~~) 展开
 我来答
鄢英皇甫晓筠
2020-01-14 · TA获得超过4038个赞
知道小有建树答主
回答量:3084
采纳率:26%
帮助的人:205万
展开全部
证明:(1)正方形ABCD,AB=BC=CD=DA

BG⊥AE,AG=GE,Rt△ABG≌Rt△BGE

AB=BE=BC
连接CN,延长BN交CE于H
自点D作DM⊥AN于M,显然Rt△ADM≌RtABG,DM=AG

BN平分∠CBE,∴
CH=HE

∠CBN=∠EBN,BE=BC,BN=BN

△BCN≌△BEN,∴
CN=NE,△CEN是等腰△
延长AE交DC延长线于F,则有:∠BAG=∠BEG=∠CFE=∠BCN
A,B,C,D,N五点共圆,∠AND=∠BNG=45°【AB弦所对圆周角=45°】
Rt△DMN,Rt△BGN都是等腰直角三角形,√2DM=√2AG=DN,√2GN=BN,√2AG+√2GN=√2AN=BN+DN
标准答案上是不做任何辅助线,仅用等腰三角形和直角三角形通过
∠GBP+∠PBN=∠GBN=∠PNB=∠NBE+∠NEB得出Rt△BPG是等腰直角三角形
进而得到,AM=GN
参考:

⊿BGA≌⊿BGE(SAS),BE=BA=BC

⊿BNC≌⊿BNE(SAS),∴∠BCN=∠BEN=∠BAE.
A,B,C,D,N共圆。∠DNB=90°.作AN的垂线AK交ND延长线于K.
∠ADK=∠ABN(共圆)。∠DAK=∠BAN.⊿ADK≌⊿ABN,DK=BN.AN=AK
⊿ANK是等腰直角三角形,BN+DN=KD+DN=KN=√2AN.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式