三项均值不等式 高二 数学 必修五
设abc为正数,求证:a3+b3+c3≥3abc证明:a3+b3+c3≥3abc⇔a3+b3+c3-3abc≥0⇔(a+b+c)[a2+b2+c2...
设abc为正数,求证:a3+b3+c3 ≥3abc 证明:a3+b3+c3 ≥3abc⇔a3+b3+c3-3abc≥0 ⇔(a+b+c)[a2+b2+c2-ab-bc-ac]≥0 我知道具体过程 但是 有这个得到 a3+b3+c3 ≥3×3∧√abc 如何得到? 式子里没有三倍根号 可是老师推导出的公式就是这个 我想不明白 求学霸 高手 老师 各种有才人士解答
展开
1个回答
展开全部
你看错了:应该是:a+b+c≥3×3∧√abc,我想推导过程是这样的:
a+b+c=(3∧√a)^3+(3∧√b)^3+(3∧√c)^3≥3(3∧√a)(3∧√b)(3∧√c),
即:a+b+c≥3×3∧√abc
a+b+c=(3∧√a)^3+(3∧√b)^3+(3∧√c)^3≥3(3∧√a)(3∧√b)(3∧√c),
即:a+b+c≥3×3∧√abc
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询