高等数学中常用的重要极限有哪几个?
2个回答
展开全部
1、利用定义求极限: 例如:很多就不必写了!
2、利用柯西准则来求! 柯西准则:要使{xn}有极限的充要条件使任给ε>0,存在自然数N,使得当n>N时,对于 任意的自然数m有|xn-xm|<ε.
3、利用极限的运算性质及已知的极限来求! 如:lim(x+x^0.5)^0.5/(x+1)^0.5 =lim(x^0.5)(1+1/x^0.5)^0.5/(x^0.5)(1+1/x)^0.5 =1.
4、利用不等式即:夹挤定理! 例子就不举了!
5、利用变量替换求极限! 例如lim (x^1/m-1)/(x^1/n-1) 可令x=y^mn 得:=n/m.
6、利用两个重要极限来求极限。 (1)lim sinx/x=1 x->0 (2)lim (1+1/n)^n=e n->∞
7、利用单调有界必有极限来求!
8、利用函数连续得性质求极限
9、用洛必达法则求,这是用得最多得。
10、用泰勒公式来求,这用得也十很经常得。
2、利用柯西准则来求! 柯西准则:要使{xn}有极限的充要条件使任给ε>0,存在自然数N,使得当n>N时,对于 任意的自然数m有|xn-xm|<ε.
3、利用极限的运算性质及已知的极限来求! 如:lim(x+x^0.5)^0.5/(x+1)^0.5 =lim(x^0.5)(1+1/x^0.5)^0.5/(x^0.5)(1+1/x)^0.5 =1.
4、利用不等式即:夹挤定理! 例子就不举了!
5、利用变量替换求极限! 例如lim (x^1/m-1)/(x^1/n-1) 可令x=y^mn 得:=n/m.
6、利用两个重要极限来求极限。 (1)lim sinx/x=1 x->0 (2)lim (1+1/n)^n=e n->∞
7、利用单调有界必有极限来求!
8、利用函数连续得性质求极限
9、用洛必达法则求,这是用得最多得。
10、用泰勒公式来求,这用得也十很经常得。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询