已知二次函数y=ax²+bx+c的图像与坐标轴的交点分别为A(-1,0),B(3,0),C(0,-3)求这个二次函数

优罗昙婆罗花
2010-11-23 · TA获得超过1.1万个赞
知道大有可为答主
回答量:1329
采纳率:0%
帮助的人:2917万
展开全部
一般地,自变量x和因变量y之间存在如下关系:
y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=ax^2;+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2;+k [抛物线的顶点P(h,k)]
交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2a k=(4ac-b^2;)/4a x1,x2=(-b±√b^2;-4ac)/2a
III.二次函数的图像
在平面直角坐标系中作出二次函数y=x2的图像,
可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质
1.抛物线是轴对称图形。对称轴为直线
x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为
P [ -b/2a ,(4ac-b^2;)/4a ]。
当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
Δ= b^2-4ac<0时,抛物线与x轴没有交点。
V.二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2;+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax^2;+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
2o08.寻¥ 2008-07-05 21:36
#LΔOЖVE& 对 2o08.寻¥ 的感言:
hao
您觉得这个答案好不好?
好(0)不好(0) 相关问题
? 什么是二次函数的应用和性质?
? 二次函数的定义、性质
? 一次函数的性质
? 什么是一次函数? 一次函数有什么性质?
? 二次函数怎么做?
标签:函数 性质 因变量 其他答案
抛物线,对称轴
∮☆风★£ 2008-07-06 19:37
1、 函数 叫做二次函数,利用多媒体演示参数 、 、 的变化对函数图像的影响,着重演示 对函数图像的影响
2、 通过以下几方面研究函数
(1)、配方
(2)、求函数图像与坐标轴的交点
(3)、函数的对称性质
(4)、函数的单调性
3、 例:研究函数 的图像与性质
解:(1)配方
所以函数 的图像可以看作是由 经一系列变换得到的,具体地说:先将 上每一点的横坐标变为原来的2倍,再将所得的图像向左移动4个单位,向下移动2个单位得到.
(2)函数与x轴的交点是(-6,0)和(-2,0),与y轴的交点是(0,6)
(3)函数的对称轴是x=-4,事实上如果一个函数满足: ( ),那么函数 关于 对称.
(4)设 , ,
= =
=
因为 ,
所以
肖瑶如意
高粉答主

2010-11-10 · 玩玩小学奥数,预防老年痴呆
肖瑶如意
采纳数:20846 获赞数:264522

向TA提问 私信TA
展开全部
把A,B,C的坐标分别代入,得:
a-b+c=0………………(1)
9a+3b+c=0…………(2)
c=-3………………(3)
(3)分别代入(1),(2),得:
a-b-3=0
9a+3b-3=0

a-b=3…………(4)
3a+b=1…………(5)
(4)+(5),得:
4a=4
a=1
代入(4),得:
1-b=3
b=-2
所求函数的解析式为:
y=x^2-2x-3
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
晏昭斌
2010-11-10 · TA获得超过585个赞
知道小有建树答主
回答量:134
采纳率:100%
帮助的人:70.9万
展开全部
解 将A、B、C三点分别代入函数解出a,b,c即可。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式