已知A属于[0,2π],且满足sin(2A+π/6)+sin(2A-π/6)+2cos^2A>=2
(1)求角A的取值集合M(2)若函数f(x)=cos2x+4ksinx(k>0,x属于M)最大值为3/2,求实数k的值...
(1)求角A的取值集合M (2)若函数f(x)=cos2x+4ksinx (k>0,x属于M)最大值为3/2,求实数k的值
展开
1个回答
展开全部
解:(1)sin(2A+π/6)+sin(2A-π/6)+2cos^2A>=2
(sin2Acosπ/6+cos2Asinπ/6)+(sin2Acosπ/6-cos2Asinπ/6)+cos2A+1≥2
(√3)/2*sin2A+(√3)/2sin2A+cos2A≥2-1
(√3)*sin2A+cos2A≥1
2sin(2A+π/6)≥1
sin(2A+π/6)≥1/2
又∵
A∈[0,2π]
2A∈[0,4π]
2A+π/6∈[π/6,π/6+4π]
2A+π/6∈[π/6,5π/6]
∪
[π/6+2π,5π/6+2π]
A∈[0,π/3]
∪
[π,π/3+π]
∴M=[0,π/3]
∪
[π,π/3+π]
(2)f(x)=cos2x+4ksinx=1-2(sinx)^2+4ksinx
=-2(sinx-k)^2+2k^2+1
∵x=M∈[0,π/3]
∪
[π,π/3+π]
sinx∈[
-(√3)/2,(√3)/2
]
(1)若k∈[
-(√3)/2,(√3)/2
]
当sinx=k时
f(x)max=2k^2+1=3/2
k=±1/2=sinx∈[
-(√3)/2,(√3)/2
]
∴k=±1/2
(2)若k<-(√3)/2
当sinx=-(√3)/2时
f(x)max=1-2*[-(√3)/2]^2+4k*[-(√3)/2]=3/2
k=-(√3)/3>-(√3)/2
矛盾!
(3)若k>(√3)/2
当sinx=(√3)/2时
f(x)max=1-2*[(√3)/2]^2+4k*[(√3)/2]=3/2
k=(√3)/3<(√3)/2
矛盾!
综上所述:
∴k=±1/2
(sin2Acosπ/6+cos2Asinπ/6)+(sin2Acosπ/6-cos2Asinπ/6)+cos2A+1≥2
(√3)/2*sin2A+(√3)/2sin2A+cos2A≥2-1
(√3)*sin2A+cos2A≥1
2sin(2A+π/6)≥1
sin(2A+π/6)≥1/2
又∵
A∈[0,2π]
2A∈[0,4π]
2A+π/6∈[π/6,π/6+4π]
2A+π/6∈[π/6,5π/6]
∪
[π/6+2π,5π/6+2π]
A∈[0,π/3]
∪
[π,π/3+π]
∴M=[0,π/3]
∪
[π,π/3+π]
(2)f(x)=cos2x+4ksinx=1-2(sinx)^2+4ksinx
=-2(sinx-k)^2+2k^2+1
∵x=M∈[0,π/3]
∪
[π,π/3+π]
sinx∈[
-(√3)/2,(√3)/2
]
(1)若k∈[
-(√3)/2,(√3)/2
]
当sinx=k时
f(x)max=2k^2+1=3/2
k=±1/2=sinx∈[
-(√3)/2,(√3)/2
]
∴k=±1/2
(2)若k<-(√3)/2
当sinx=-(√3)/2时
f(x)max=1-2*[-(√3)/2]^2+4k*[-(√3)/2]=3/2
k=-(√3)/3>-(√3)/2
矛盾!
(3)若k>(√3)/2
当sinx=(√3)/2时
f(x)max=1-2*[(√3)/2]^2+4k*[(√3)/2]=3/2
k=(√3)/3<(√3)/2
矛盾!
综上所述:
∴k=±1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询