怎样求函数值域?y=4-根号里(3+2x-x的平方)

 我来答
台晋圭抒
2020-04-20 · TA获得超过1135个赞
知道小有建树答主
回答量:1756
采纳率:100%
帮助的人:8.3万
展开全部
要求值域,就得先求出定义域
y=4-√(3+2x-x^2)
√(3+2x-x^2)>=0
3+2x-x^2>=0
x^2-2x-3<=0
(x-3)(x+1)<=0
-1<=x<=3
y=4-√(3+2x-x^2)
=4-√(4-1+2x-x^2)
=4-√[4-(x-1)^2]
当x=1时,√[4-(x-1)^2]取得最大值
即y=4-√(3+2x-x^2)取得最小值为:2
当x=-1或x=3时,√[4-(x-1)^2]取得最小值
即y=4-√(3+2x-x^2)取得最大值为:4
所以y=4-√(3+2x-x^2)的值域为:[2,4]
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式