n²(arctan
证明:arctan(n+1)-arctan(n)=arctan{1/[1+n(n+1)]}对1/(1+x^2),求n到n+1的积分(其中n远大于1)等于arctan(n+...
证明:arctan(n+1)-arctan(n)=arctan{1/[1+n(n+1)]}
对1/(1+x^2),求n到n+1的积分(其中n远大于1)
等于arctan(n+1)-arctan(n),这个对吗
如果对,如何证明上述结果 展开
对1/(1+x^2),求n到n+1的积分(其中n远大于1)
等于arctan(n+1)-arctan(n),这个对吗
如果对,如何证明上述结果 展开
1个回答
展开全部
∫[n,n+1]1/(1+x^2)dx
=arctanx[n,n+1]
=arctan(n+1)-arctan(n)
你的积分过程没错.
对于arctan(n+1)-arctan(n)=arctan{1/[1+n(n+1)]},假设正确
两边求正切得
tan[arctan(n+1)-arctan(n)]=tanarctan{1/[1+n(n+1)]}
即[tanarctan(n+1)-tanarctan(n)]/[1+tanarctan(n+1)*tanarctan(n)]=tanarctan{1/[1+n(n+1)]}
1/[1+(n+1)n)]=1/[1+n(n+1)]
这个是成立的,你证明的没有错.
=arctanx[n,n+1]
=arctan(n+1)-arctan(n)
你的积分过程没错.
对于arctan(n+1)-arctan(n)=arctan{1/[1+n(n+1)]},假设正确
两边求正切得
tan[arctan(n+1)-arctan(n)]=tanarctan{1/[1+n(n+1)]}
即[tanarctan(n+1)-tanarctan(n)]/[1+tanarctan(n+1)*tanarctan(n)]=tanarctan{1/[1+n(n+1)]}
1/[1+(n+1)n)]=1/[1+n(n+1)]
这个是成立的,你证明的没有错.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询