求证:若一个整数的数字和能被3整除,则这个整数能被3整除,为什么这个是对的?

 我来答
星若澹台湛
2020-07-24 · TA获得超过1080个赞
知道小有建树答主
回答量:1999
采纳率:96%
帮助的人:9.8万
展开全部
设一个整数各位为从个位数开始为a0、a1、a2、.an
则:这个数=an*10^n+.+a2*10²+a1*10+a0
=(an+.+a2+a1+a0)+an*(10^n-1)+.a2*99+a1*9
因为10^n-1=9.9 (共n个9):是3的倍数
所以:只要an+.+a2+a1+a0是3的倍数,这个数就能被3整除
所以,整数的数字和能被3整除,则这个整数能被3整除.
得证
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式