a的转置乘以a有什么性质?
展开全部
A是正交矩阵,正交矩阵的性质为:每一个行(或列)向量都是单位向量,且任两个行(或列)向量正交(即内积为零)。反过来,如果这种性质的矩阵一定是正交矩阵。通常用这个性质作为判别正交矩阵的一个标准。
直观来看,将A的所有元素绕着一条从第1行第1列元素出发的右下方45度的射线作镜面反转,即得到A的转置。一个矩阵M,把它的第一行变成第一列,第二行变成第二列,最末一行变为最末一列, 从而得到一个新的矩阵N。 这一过程称为矩阵的转置。即矩阵A的行和列对应互换。
相关内容解释
正交矩阵是实数特殊化的酉矩阵,因此总是正规矩阵。尽管我们在这里只考虑实数矩阵,这个定义可用于其元素来自任何域的矩阵。正交矩阵毕竟是从内积自然引出的,对于复数的矩阵这导致了归一要求。
正交矩阵不一定是实矩阵。实正交矩阵(即该正交矩阵中所有元都是实数)可以看做是一种特殊的酉矩阵,但是存在一种复正交矩阵,复正交矩阵不是酉矩阵。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询