齐次线性方程组的通解是什么?
展开全部
可以把齐次方程组的系数矩阵看成是向量组。
令自由元中一个版为 1 ,其余为 0 ,求得 n – r 个解向量,即为一个基础解系。齐次线性方程组AX= 0:若X1,X2… ,Xn-r为基础解系,则权X=k1 X1+ k2 X2 +…+kn-rXn-r,即为AX= 0的全部解(或称方程组的通解)。
扩展资料:
1、齐次线性方程组的两个解的和仍是齐次线性方程组的一组解。
2、齐次线性方程组的解的k倍仍然是齐次线性方程组的解。
3、齐次线性方程组的系数矩阵秩r(A)=n,方程组有唯一零解。
4、齐次线性方程组的系数矩阵秩r(A)<n,方程组有无数多解。
参考资料来源:百度百科-齐次线性方程组
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询