齐次线性方程组的通解是什么?

 我来答
帐号已注销
2021-04-14 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:161万
展开全部

可以把齐次方程组的系数矩阵看成是向量组。

令自由元中一个版为 1 ,其余为 0 ,求得 n – r 个解向量,即为一个基础解系。齐次线性方程组AX= 0:若X1,X2… ,Xn-r为基础解系,则权X=k1 X1+ k2 X2 +…+kn-rXn-r,即为AX= 0的全部解(或称方程组的通解)。

扩展资料:

1、齐次线性方程组的两个解的和仍是齐次线性方程组的一组解。

2、齐次线性方程组的解的k倍仍然是齐次线性方程组的解。

3、齐次线性方程组的系数矩阵秩r(A)=n,方程组有唯一零解。

4、齐次线性方程组的系数矩阵秩r(A)<n,方程组有无数多解。

参考资料来源:百度百科-齐次线性方程组

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式