根号下4-x^2的定积分是什么?
2个回答
展开全部
根号下4-x^2的定积分是x*√(4-x^2)/2+2arcsin(x/2)+C。
解:∫√(4-x^2)dx
=∫√(2^2-x^2)dx
那么令x=2sint,则
∫√(4-x^2)dx =∫√(2^2-x^2)dx
=∫(2cost)d(2sint)
=4∫cost*costdt
=4∫(cos2t+1)/2dt
=2∫cos2tdt+2∫1dt
=sin2t+2t+C
=2sintcost+2t+C
又x=2sint,则sint=x/2,cost=√(4-x^2)/2,t=arcsin(x/2)
所以∫√(4-x^2)dx =2sintcost+2t+C
=x*√(4-x^2)/2+2arcsin(x/2)+C
扩展资料:
定积分是把函数在某个区间上的图象[a,b]分成n份,用平行于y轴的直线把其分割成无数个矩形,再求当n→+∞时所有这些矩形面积的和。
定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询