短除法分解质因数
先用一个除数除以能被它除尽的一个质数,以此类推,除到商是质数为止。如下图:
短除符号就是除号倒过来。短除就是在除法中写除数的地方写两个数共有的质因数,然后落下两个数被公有质因数整除的商,之后再除,以此类推,直到结果互质为止(两个数互质)。
而在用短除计算公倍数数时,对其中任意两个数存在的因数都要算出,其它没有这个因数的数则原样落下。直到剩下每两个都是互质关系。求最大公约数便乘一边,求最小公倍数便乘一圈。
公约数:亦称“公因数”。是几个整数同时均能整除的整数。如果一个整数同时是几个整数的约数,称这个整数为它们的“公约数”;公约数中最大的称为最大公约数。
计算方法:
短除法求最大约数,先用这几个数的公约数连续去除,一直除到所有的商互质为止,然后把所有的除数连乘起来,所得的积就是这几个数的最大公约数。例如,求24、48、60的最大公约数。
(24、48、60)=2×3×2=12。
短除法求最小公倍数,先用这几个数的公约数去除每一个数,再用部分数的公约数去除,并把不能整除的数移下来,一直除到所有的商中每两个数都是互质的为止,然后把所有的除数和商连乘起来,所得的积就是这几个数的最小公倍数,例如,求12、15、18的最小公倍数。
(12、15、18)=3×2×2×5×3=180。