三角函数的余弦、正切、正弦、余切是怎么定义的?
正切,数学术语,在Rt△ABC(直角三角形)中,∠C=90°,AB是∠C的对边c,BC是∠A的对边a,AC是∠B的对边b,正切函数就是tanB=b/a,即tanB=AC/BC。
正弦(sine),数学术语,是三角函数的一种,在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA(由英语sine一词简写得来),即sinA=∠A的对边/斜边。
古代说法,正弦是股与弦的比例。
在直角三角形中,某锐角的相邻直角边和相对直角边的比,叫做该锐角的余切[1]。余切与正切互为倒数,用“cot+角度”表示。余切函数的图象由一些隔离的分支组成(如图)。余切函数是无界函数,可取一切实数值,也是奇函数和周期函数,其最小正周期是π
2024-12-30 广告
30度45度60度90度的余弦、正切、正弦、余切所对应的值如图所示:
扩展资料:
一、两角和公式
cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
二、积化和差公式
sinαsinβ = [cos(α-β)-cos(α+β)] /2
sinαcosβ = [sin(α+β)+sin(α-β)]/2
cosαsinβ = [sin(α+β)-sin(α-β)]/2
三、定义域和值域:
sin(x),cos(x)的定义域为R,值域为[-1,1]。
tan(x)的定义域为x不等于π/2+kπ(k∈Z),值域为R。
cot(x)的定义域为x不等于kπ(k∈Z),值域为R。
y=a·sin(x)+b·cos(x)+c 的值域为 [ c-√(a²;+b²;) , c+√(a²;+b²;)] 周期T=2π/ω。
参考资料来源:
余弦 = 邻边/斜边, cosA = b/c
正弦 = 对边/斜边, sinA = a/c
正切 = 对边/邻边, tanA = a/b
余切 = 邻边/对边, cotA = b/a