数学的手抄报内容
高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:1+2+3+.....+97+98+99+100=?
老师心里正想,这下子小朋友一定要算到下课了吧!
正要借口出去时,却被高斯叫住了!!
原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?
高斯告诉大家他是如何算出的:把1加至100与100加至1排成两排相加,也就是说:1+2+3+4+.....+96+97+98+99+100
100+99+98+97+96+.....+4+3+2+1=101+101+101+.....+101+101+101+101共有一百个101相加,但算式重复了两次,所以把10100除以2便得到答案等于从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才!
关于数学的手抄报内容
在学习和工作中,大家都听说过或者使用过手抄报吧,每一份手抄报的后面都包含着编者的辛勤劳动和聪颖的智慧。手抄报的类型有很多,你都知道吗?下面是我精心整理的关于数学的手抄报内容,希望对大家有所帮助。
【逆推法解决数学问题】
1.一个农村少年,提了一筐鸡蛋到市场上去卖。他把所有鸡蛋的一半加半个,卖给了第一个顾客;又把剩下的一半加半个,卖给了第二个顾客;再把剩下的一半加半个,卖给了第三个顾客..当他把最后剩下的一半加半个,卖给了第六个顾客的时候,所有的鸡蛋全部卖完了,并且所有顾客买到的都是整个的鸡蛋。请问:这个少年一共拿了多少鸡蛋到市场上去卖?
要想清楚,第六次的一半加半个只能是一个鸡蛋。倒推法简便可靠,是一种解决问题的好方法。
2.毛毛虫爬树
星期天的早晨六点钟,有一条毛毛虫开始爬树。白天,到十八点钟,它爬上去了五米;晚上,它退下来了两米。请问:它什么时候爬到九米?
9÷(5-2)=3,显然不对。因为经过两个昼夜,在星期二早晨,毛毛虫已经爬到了六米;而这个白天,它会继续往上爬,到十八点钟还能爬五米。6+5=11(米),已经超过了。请算一算,它究竟是在什么时候正好爬到九米?当然,毛毛虫的爬行是等速的。
【数学家的故事:华罗庚】
有一次,他跟邻居家的孩子一起出城去玩,他们走着走着;忽然看见路旁有座荒坟,坟旁有许多石人、石马。这立刻引起了华罗庚的好奇心,他非常想去看个究竟。于是他就对邻居家的孩子说:
“那边可能有好玩的,我们过去看看好吗?”
邻居家的孩子回答道:“好吧,但只能呆一会儿,我有点害怕数学手抄报大全简单又漂亮数学手抄报大全简单又漂亮。”
胆大的华罗庚笑着说:“不用怕,世间是没有鬼的。”说完,他首先向荒坟跑去。
两个孩子来到坟前,仔细端详着那些石人、石马,用手摸摸这儿,摸摸那儿,觉得非常有趣。爱动脑筋的华罗庚突然问邻居家的孩子:“这些石人、石马各有多重?”
邻居家的孩子迷惑地望着他说:"我怎么能知道呢?你怎么会问出这样的傻问题,难怪人家都叫你‘罗呆子’。”
华罗庚很不甘心地说道:“能否想出一种办法来计算一下呢?”
邻居家的孩子听到这话大笑起来,说道:“等你将来当了数学家再考虑这个问题吧!不过你要是能当上数学家,恐怕就要日出西山了。”
华罗庚不顾邻家孩子的嘲笑,坚定地说:“以后我一定能想出办法来的。”
当然,计算出这些石人、石马的重量,对于后来果真成为数学家的华罗庚来讲,根本不在话下。
金坛县城东青龙山上有座庙,每年都要在那里举行庙会,少年华罗庚是个喜爱凑热闹的人,凡是有热闹的地方都少不了他。有一年华罗庚也同大人们一起赶庙会,一个热闹场面吸引了他,只见一匹高头大马从青龙山向城里走来,马上坐着头插羽毛、身穿花袍的“菩萨”。每到之处,路上的老百姓纳头便拜,非常虔诚。拜后,他们向“菩萨”身前的小罐里投入钱,就可以问神问卦,求医求子了。
华罗庚感到好笑,他自己却不跪不拜“菩萨”。站在旁边的大人见后很生气,训斥道:
“孩子,你为什么不拜,这菩萨可灵了。”
“菩萨真有那么灵吗?”华罗庚问道。
一个人说道:“那当然,看你小小年纪千万不要冒犯了神灵,否则,你就会倒楣的。”
“菩萨真的万能吗?”这个问题在华罗庚心中盘旋着。他不相信一尊泥菩萨真能救苦救难。
庙会散了,看热闹的老百姓都回家了。而华罗庚却远远地跟踪着“菩萨”数学手抄报大全简单又漂亮黑板报。看到“菩萨”进了青龙山庙里,小华罗庚急忙跑过去,趴在门缝向里面看
只见 “菩萨”能动了,他从马上下来,脱去身上的花衣服,又顺手抹去脸上的妆束。门外的华庚惊呆了,原来百姓们顶礼膜拜的“菩萨”竟是一村民装扮的。
华罗庚终于解开了心中的疑团,他将“菩萨”骗人的事告诉了村子里的每个人,人们终于恍然大悟了。从此,人们都对这个孩子刮目相看,再也无人喊他“罗呆子”了。正是华罗庚这种打破砂锅问到底的精神。
数学简介
数学是研究数量、结构、变化、空间以及信息等概念的一门学科。
数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。
在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。
定义
亚里士多德把数学定义为“数量数学”,这个定义直到18世纪。从19世纪开始,数学研究越来越严格,开始涉及与数量和量度无明确关系的群论和投影几何等抽象主题,数学家和哲学家开始提出各种新的定义。这些定义中的一些强调了大量数学的演绎性质,一些强调了它的抽象性,一些强调数学中的某些话题。即使在专业人士中,对数学的定义也没有达成共识。数学是否是艺术或科学,甚至没有一致意见。[8]许多专业数学家对数学的`定义不感兴趣,或者认为它是不可定义的。有些只是说,“数学是数学家做的。”
数学定义的三个主要类型被称为逻辑学家,直觉主义者和形式主义者,每个都反映了不同的哲学思想学派。都有严重的问题,没有人普遍接受,没有和解似乎是可行的。
数学逻辑的早期定义是本杰明·皮尔士(Benjamin Peirce)的“得出必要结论的科学”(1870)。在Principia Mathematica,Bertrand Russell和Alfred North Whitehead提出了被称为逻辑主义的哲学程序,并试图证明所有的数学概念,陈述和原则都可以用符号逻辑来定义和证明。数学的逻辑学定义是罗素的“所有数学是符号逻辑”(1903)。
直觉主义定义,从数学家L. E. J. Brouwer,识别具有某些精神现象的数学。直觉主义定义的一个例子是“数学是一个接着一个进行构造的心理活动”。直观主义的特点是它拒绝根据其他定义认为有效的一些数学思想。特别是,虽然其他数学哲学允许可以被证明存在的对象,即使它们不能被构造,但直觉主义只允许可以实际构建的数学对象。
正式主义定义用其符号和操作规则来确定数学。 Haskell Curry将数学简单地定义为“正式系统的科学”。[33]正式系统是一组符号,或令牌,还有一些规则告诉令牌如何组合成公式。在正式系统中,公理一词具有特殊意义,与“不言而喻的真理”的普通含义不同。在正式系统中,公理是包含在给定的正式系统中的令牌的组合,而不需要使用系统的规则导出。
;