勾股定理计算公式
勾股定理是一个基本的几何定理,是用代数思想解决几何问题的最重要的工具之一。下面我整理的勾股定理计算公式,供大家参考。
勾股定理的公式
在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么可以用数学语言表达:
勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方.这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”。
勾股定理(又称商高定理,毕达哥拉斯定理)是一个基本的几何定理,早在中国商代就由商高发现.据说毕达高拉斯发现了这个定后,即斩了百头牛作庆祝,因此又称“百牛定理”。
勾股定理的意义
1、勾股定理的证明是论证几何的发端;
2、勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理;
3、勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解;
4、勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理;
5、勾股定理是欧氏几何的基础定理,并有巨大的实用价值.这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用。
相关勾股定理计算题
2024-10-28 广告