高数定积分设f(x)=1/(1+x),x≥0 f(x)=1/(1+e^x),x≤0 求积分f(x-1)dx 上限2 下限0

 我来答
世纪网络17
2022-06-20 · TA获得超过5895个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:136万
展开全部
f(x)这么写为理解是分段函数了,0到2对f(x-1)作积分 等价于 -1到1对f(t)作积分,所以分段是有必要的
先作变量代换 t=x-1 变成 积分-1到1 f(t)dt
再分解为两段 变成 积分-1到0 f(t)dt 积分0到1f(t)dt
第一段里表达式就是 f(t)=1/(1+e^t) 上下同时乘以e^(-t)变成 f(t) =e^(-t)/(e^(-t)+1) = -(e^(-t)+1)'/(e^(-t)+1)
所以第一部分的积分等于 -ln(e^(-t)+1)|-1到0 也就是 -ln2 + ln(e+1)
第二部分的积分 等于 0到1积分 1/(1+t)dt = ln(1+t)|0到1 也就是 ln2-ln1 = ln2
两个分段的积分合起来就是原来要求的整个积分,也就是 ln(e+1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式