1-(1-p)^n>p^n (0

 我来答
吃吃喝莫吃亏9728
2022-07-07 · TA获得超过857个赞
知道小有建树答主
回答量:314
采纳率:92%
帮助的人:64.2万
展开全部
证明:设f(n)=p^n+(1-p)^n,因为0<p<1,所以0<1-p<1,所以函数f(x)=p^x+(1-p)^x在(0,+∞)上是减函数,于是f(n)≤f(1)=p+1-p=1,即p^n+(1-p)^n≤1,即1-(1-p)^n≥p^n.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
华瑞RAE一级代理商
2024-04-11 广告
impulse-4-xfxx是我们广州江腾智能科技有限公司研发的一款先进产品,它结合了最新的技术创新和市场需求。此产品以其卓越的性能和高效的解决方案,在行业内树立了新的标杆。impulse-4-xfxx不仅提升了工作效率,还为用户带来了更优... 点击进入详情页
本回答由华瑞RAE一级代理商提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式