1-(1-p)^n>p^n (0

 我来答
吃吃喝莫吃亏9728
2022-07-07 · TA获得超过856个赞
知道小有建树答主
回答量:314
采纳率:92%
帮助的人:63.4万
展开全部
证明:设f(n)=p^n+(1-p)^n,因为0<p<1,所以0<1-p<1,所以函数f(x)=p^x+(1-p)^x在(0,+∞)上是减函数,于是f(n)≤f(1)=p+1-p=1,即p^n+(1-p)^n≤1,即1-(1-p)^n≥p^n.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式