已知平行四边形ABCD中,E为AD的中点,AF/BF=2/5,则AG/GC=
1个回答
展开全部
过点E作EH∥CD交AC于H,设AF=2X
∵E是AD的中点,EH∥CD
∴EH=CD/2,AH=CH=AC/2
∵AF:BF=2:5,AF=2X
∴BF=AF+BF=7X
∵平行四边形ABCD
∴CD=AB=7X,AB∥CD
∴EH=CD/2=7X/2,EH∥AB
∴HG/AG=EH/AF=(7X/2)/2X=7/4
∴HG=7/4×AG
∴AH=AG+HG=AG+7/4×AG=11/4×AG
∴CH=AH=11/4×AG
∴GC=CH+HG=11/4×AG+7/4×AG=9/2×AG
∴AG/GC=2/9
∴AG:GC=2:9
∵E是AD的中点,EH∥CD
∴EH=CD/2,AH=CH=AC/2
∵AF:BF=2:5,AF=2X
∴BF=AF+BF=7X
∵平行四边形ABCD
∴CD=AB=7X,AB∥CD
∴EH=CD/2=7X/2,EH∥AB
∴HG/AG=EH/AF=(7X/2)/2X=7/4
∴HG=7/4×AG
∴AH=AG+HG=AG+7/4×AG=11/4×AG
∴CH=AH=11/4×AG
∴GC=CH+HG=11/4×AG+7/4×AG=9/2×AG
∴AG/GC=2/9
∴AG:GC=2:9
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询