直线的极坐标方程是什么?
展开全部
直线的极坐标方程有多种形式,其中极坐标方程psin(a+日)=m可认为是直线的一般式方程。当直线过极点时,直线的倾斜角为α: O=a(p∈R);当直线过点M(a,O),且垂直于极轴时,pcos0=a;当直线过点M(a,Tt/2),且平行于极轴: psinO=a。
极坐标系是指在平面内由极点、极轴和极径组成的坐标系。在平面上取定一点O,称为极点。从O出发引一条射线Ox,称为极轴。再取定一个单位长度,通常规定角度取逆时针方向为正。
极坐标系用途
极坐标方程用于表示两点间的关系,极坐标方程可以用夹角和距离来简单表达两点间的关系。极坐标系中一个重要的特性是,平面直角坐标中的任意一点,可以在极坐标系中有无限种表达形式。
极坐标系是一个二维坐标系统,由一个夹角和一段相对原点—极点的距离来表示。极坐标系中的角度通常表示为角度或者弧度,使用公式2T*rad= 360°。用极坐标系描述的曲线方程称作极坐标方程,通常表示为r为自变量O的函数。
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
直线的参数方程设法为:X=x0+tcosAY=y0+tsinAt是参数 (x0,y0)是直线过的点。解题思路:X=1+2TY=3-4TT为参数M0Q=M0Mcosα,QM=M0Msinα.设M0M=t,取t为参数.∵ M0Q=x-x0,QM...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询