∫xdx=- xe^(- x) dx=?
展开全部
∫ xe^(- x) dx
= - ∫ xe^(- x) d(- x)
= - ∫ x d[e^(- x)]
= - [xe^(- x) - ∫ e^(- x) dx] <--分部积分法
= - xe^(- x) + (- 1)∫ e^(- x) d(- x)
= - xe^(- x) - e^(- x) + C
= - (x + 1)e^(- x) + C
扩展资料:
求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。
如果F(x)是f(x)在区间I上的一个原函数,那么F(x)+C就是f(x)的不定积分,即∫f(x)dx=F(x)+C。因而不定积分∫f(x) dx可以表示f(x)的任意一个原函数。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询