最大最小值定理
1个回答
展开全部
最大最小值定理:若f(x)在闭区间[a,b]上连续,则f(x)在[a,b]上一定有最大值和最小值。
最小值,为已知的数据中的最小的一个值,最大值,为已知的数据中的最大的一个值。集合的最大和最小值分别是集合中最大和最小的元素,函数的最大值和最小值被统称为极值。
区分方法:在函数图像或者集合图像中,最高点是最大值,最低点是最小值。
闭区间上的连续函数,必然有最大值和最小值。这是有定理的。开区间(含半开区间)上的连续函数就不一定有最大值和最小值了。区间内的非连续函数也不一定有最大值和最小值。
函数y=f(x)当自变量x的变化很小时,所引起的因变量y的变化也很小。例如,气温随时间变化,只要时间变化很小,气温的变化也是很小的;又如,自由落体的位移随时间变化,只要时间变化足够短,位移的变化也是很小的。
对于这种现象,说因变量关于自变量是连续变化的,连续函数在直角坐标系中的图像是一条没有断裂的连续曲线。由极限的性质可知,一个函数在某点连续的充要条件是它在该点左右都连续。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询