高斯消元法解线性方程组

 我来答
司泽南聿
2022-11-27 · TA获得超过1559个赞
知道大有可为答主
回答量:6342
采纳率:100%
帮助的人:400万
展开全部

高斯消元法解线性方程组如下:

高斯消元法,是线性代数中求解线性方程组的一种算法。它通常被理解为在相应的系数矩阵上执行的一系列操作。要对矩阵执行行缩减,可以使用一系列基本行操作修改矩阵,直到矩阵的左下角尽可能地用零填充。

基本行操作有三种类型: 

交换两行

将一行乘以一个非零数字

将一行的倍数添加到另一行

运用以上方法作,一个矩阵总是可以被转换成一个上三角矩阵,实际上是一个行阶梯形。一旦所有的主系数(每一行中最左边的非零项)都为1,并且包含主系数的每一列在其他地方都为零,这个矩阵就称为行简化阶梯形。最终的形式是独特的;换句话说,它与所使用的行操作序列无关。

例如,在接下来的行运算序列中(每一步可能进行多个初等运算),第三和第四个矩阵是行简化阶梯形矩阵,最终的矩阵是唯一的行简化阶梯形矩阵。

举例:

假设目标是找到并描述下列线性方程组的解集:

下表是同时应用于方程组及其增广矩阵的行约简过程。在实践中,人们通常不使用方程来处理系统,而是使用增广矩阵,它更适合于计算机操作。行约简过程可以总结为:从L1以下的所有方程中消去x,再从L2以下的所有方程中消去y。这将使方程组变成三角形。然后,用反代换法求解每个未知数。

一旦y也从第三行中删除,结果是三角形形式的线性方程组,因此算法的第一部分完成。从计算的角度来看,以相反的顺序求解变量更快,这一过程被称为反向替换。人们看到的解决办法是z= 1,y= 3,和x= 2。所以原始方程组有唯一的解。

第二列描述了刚刚执行了哪些行操作。所以第一步x从...中消除L2通过添加 3 / 2 L一到L2。接下来,x从...中消除L3通过添加L一到L3。

厦门鲎试剂生物科技股份有限公司
2023-08-01 广告
鲎试剂灵敏度的测定值(λc).λc=1g-1(∑X/4)式中X为反应终点浓度的对数值(1g)。反应终点浓度是指系列递减的内毒素浓度中最后一个呈阳性结果的浓度。厦门鲎试剂生物科技股份有限公司是目前国内历史悠久的专业生产鲎试剂及配套产品的厂家。... 点击进入详情页
本回答由厦门鲎试剂生物科技股份有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式