非欧几里得空间
展开全部
非欧几里得几何是指不同于欧几里得几何学的几何体系,简称为非欧几何
一般是指罗巴切夫斯基几何(双曲几何)和黎曼的椭圆几何。它们与欧氏几何最主要的区别在于公理体系中采用了不同的平行定理。
诞生:
从古希腊时代到公元1800年间,许多数学家都尝试用欧几里得几何中的其他公理来证明欧几里得的平行公理,但是结果都归于失败。19世纪,德国数学家高斯、俄国数学家罗巴切夫斯基、匈牙利数学家波尔约等人各自独立地认识到这种证明是不可能的。
也就是说,平行公理是独立于其他公理的,并且可以用不同的“平行公理”来替代它。高斯关于非欧几何的信件和笔记在他生前一直没有公开发表,只是在他1855年去世后出版时才引起人们的注意 。
罗巴切夫斯基和波尔约分别在1830年前后发表了他们关于非欧几何的理论。在这种几何里,罗巴切夫斯基平行公理替代了欧几里得平行公理,即在一个平面上,过已知直线外一点至少有两条直线与该直线不相交。
由此可演绎出一系列全无矛盾的结论,并且可以得出三角形的内角和小于两直角。罗氏几何中有许多不同于欧氏几何的定理。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询