求解答,要过程。谢谢!
1.
(1)
lim(x->0) (x^3+2x+5)/(x+1)
=(0+0+5)/(0+1)
=5
(2)
lim(x->2) (x^2+x-6)/(x^2-4)
=lim(x->2) (x-2)(x+3)/[(x-2)(x+2)]
=lim(x->2) (x+3)/(x+2)
=(2+3)/(2+2)
=5/4
(3)
lim(x->0) [√(x^2+1)-1 ]/x
分子分母同时乘以 [√(x^2+1)+1 ]
=lim(x->0) x^2/{x.[√(x^2+1)+1 ] }
=lim(x->0) x/[√(x^2+1)+1 ]
=0
(4)
lim(x->0) (4x^3-2x^2+x)/(3x^2+2x)
=lim(x->0) (4x^2-2x+1)/(3x+2)
=(0-0+1)/(0+2)
=1/2
(5)
lim(x->∞) (1+1/x)(2-1/x^2)
=(1+0)(2-0)
=2
(6)
lim(x->∞) cosx/[e^x +e^(-x)]
分子分母同时除e^x
=lim(x->∞) [cosx/e^x]/[1 +1/e^(2x)]
=0/(1+0)
=0
2.
(1)
lim(x->0) sinkx/x
=lim(x->0) kx/x
=k
(2)
lim(x->0) sin5x/(3x)
=lim(x->0) 5x/(3x)
=5/3
(1)lim[x-->0](x^2+2x+5)/(x+1)=5 --------------------------------------- 代入法
(2)lim[x-->2](x^2+x-6)/(x^2-4)=lim[x-->2](x+3)/(x+2)=5/4---------同除(x-2)
(3)lim[x-->0](√(x^2+1)-1)/x ---------------------------------------同乘(√(x^2+1)+1)
=lim[x-->0][(√(x^2+1)-1)(√(x^2+1)+1)]/[x(√(x^2+1)+1)]-------有理化
=lim[x-->0]x/(√(x^2+1)+1)=0
(4)lim[x-->0](4x^3-2x^2+x)/(3x^2+2x) --------------------------分子分母同除x
=lim[x-->0](4x^2-2x+1)/(3x+2)=1/2
(5)lim[x-->∞0](1+1/x)(2-1/x^2)=2 ---------------------------利用无穷大与无穷小关系
(6)∵ |cosx|<=1,lim[x-->+∞]1/(e^x+e^(-x))=0
∴ lim[x-->+∞]cosx/(e^x+e^(-x))=0 --------------------无穷小的性质
(1)lim[x-->0]sinkx/x=k -----------------------等价无穷小代换
(2)lim[x-->0]sin5x/3x=5/3 -----------------------等价无穷小代换